9,870 research outputs found

    On Revenue Monotonicity in Combinatorial Auctions

    Full text link
    Along with substantial progress made recently in designing near-optimal mechanisms for multi-item auctions, interesting structural questions have also been raised and studied. In particular, is it true that the seller can always extract more revenue from a market where the buyers value the items higher than another market? In this paper we obtain such a revenue monotonicity result in a general setting. Precisely, consider the revenue-maximizing combinatorial auction for mm items and nn buyers in the Bayesian setting, specified by a valuation function vv and a set FF of nmnm independent item-type distributions. Let REV(v,F)REV(v, F) denote the maximum revenue achievable under FF by any incentive compatible mechanism. Intuitively, one would expect that REV(v,G)≥REV(v,F)REV(v, G)\geq REV(v, F) if distribution GG stochastically dominates FF. Surprisingly, Hart and Reny (2012) showed that this is not always true even for the simple case when vv is additive. A natural question arises: Are these deviations contained within bounds? To what extent may the monotonicity intuition still be valid? We present an {approximate monotonicity} theorem for the class of fractionally subadditive (XOS) valuation functions vv, showing that REV(v,G)≥c REV(v,F)REV(v, G)\geq c\,REV(v, F) if GG stochastically dominates FF under vv where c>0c>0 is a universal constant. Previously, approximate monotonicity was known only for the case n=1n=1: Babaioff et al. (2014) for the class of additive valuations, and Rubinstein and Weinberg (2015) for all subaddtive valuation functions.Comment: 10 page

    Isomorphism of measure preserving transformations

    Get PDF

    Parameterization and R-Peak Error Estimations of ECG Signals Using Independent Component Analysis

    Get PDF
    Principal component analysis (PCA) is used to reduce dimensionality of electrocardiogram (ECG) data prior to performing independent component analysis (ICA). A newly developed PCA variance estimator by the author has been applied for detecting true, actual and false peaks of ECG data files. In this paper, it is felt that the ability of ICA is also checked for parameterization of ECG signals, which is necessary at times. Independent components (ICs) of properly parameterized ECG signals are more readily interpretable than the measurements themselves, or their ICs. The original ECG recordings and the samples are corrected by statistical measures to estimate the noise statistics of ECG signals and find the reconstruction errors. The capability of ICA is justified by finding the true, false and actual peaks of around 25–50, CSE (common standards for electrocardiography) database ECG files. In the present work, joint approximation for diagonalization of the eigen matrices (Jade) algorithm is applied to 3-channel ECG. ICA processing of different cases is dealt with and the R-peak magnitudes of the ECG waveforms before and after applying ICA are found and marked. ICA results obtained indicate that in most of the cases, the percentage error in reconstruction is very small. The developed PCA variance estimator along with the quadratic spline wavelet gave a sensitivity of 97.47% before applying ICA and 98.07% after ICA processing

    Deep Over-sampling Framework for Classifying Imbalanced Data

    Full text link
    Class imbalance is a challenging issue in practical classification problems for deep learning models as well as traditional models. Traditionally successful countermeasures such as synthetic over-sampling have had limited success with complex, structured data handled by deep learning models. In this paper, we propose Deep Over-sampling (DOS), a framework for extending the synthetic over-sampling method to exploit the deep feature space acquired by a convolutional neural network (CNN). Its key feature is an explicit, supervised representation learning, for which the training data presents each raw input sample with a synthetic embedding target in the deep feature space, which is sampled from the linear subspace of in-class neighbors. We implement an iterative process of training the CNN and updating the targets, which induces smaller in-class variance among the embeddings, to increase the discriminative power of the deep representation. We present an empirical study using public benchmarks, which shows that the DOS framework not only counteracts class imbalance better than the existing method, but also improves the performance of the CNN in the standard, balanced settings

    Social Emotion Mining: An Insight

    Full text link
    Emotions are an indispensable component of variety of texts present on online social media services. A lot of research has been done to detect and analyse the emotions present in text but most of them are done from the author’s perspective. This paper focuses on providing an in-depth survey of different work done in Social Emotion Mining (SEM) from reader’s perspective. It is a first attempt towards categorization of existing literature into emotion mining levels. It also highlights different models and techniques utilized by various authors in this area. Major limitations and challenges in this area of Emotion Detection and Analysis are also presented
    • …
    corecore