7,978 research outputs found

    Crystallographic studies of the Escherichia coli quinol-fumarate reductase with inhibitors bound to the quinol-binding site

    Get PDF
    The quinol-fumarate reductase (QFR) respiratory complex of Escherichia coli is a four-subunit integral-membrane complex that catalyzes the final step of anaerobic respiration when fumarate is the terminal electron acceptor. The membrane-soluble redox-active molecule menaquinol (MQH(2)) transfers electrons to QFR by binding directly to the membrane-spanning region. The crystal structure of QFR contains two quinone species, presumably MQH(2), bound to the transmembrane-spanning region. The binding sites for the two quinone molecules are termed Q(P) and Q(D), indicating their positions proximal Q(P)) or distal (Q(D)) to the site of fumarate reduction in the hydrophilic flavoprotein and iron-sulfur protein subunits. It has not been established whether both of these sites are mechanistically significant. Co-crystallization studies of the E. coli QFR with the known quinol-binding site inhibitors 2-heptyl-4-hydroxyquinoline-N-oxide and 2-[1-(p-chlorophenyl)ethyl] 4,6-dinitrophenol establish that both inhibitors block the binding of MQH(2) at the Q(P) site. In the structures with the inhibitor bound at Q(P), no density is observed at Q(D), which suggests that the occupancy of this site can vary and argues against a structurally obligatory role for quinol binding to Q(D). A comparison of the Q(P) site of the E. coli enzyme with quinone-binding sites in other respiratory enzymes shows that an acidic residue is structurally conserved. This acidic residue, Glu-C29, in the E. coli enzyme may act as a proton shuttle from the quinol during enzyme turnover

    Water vapor radiometry research and development phase

    Get PDF
    This report describes the research and development phase for eight dual-channel water vapor radiometers constructed for the Crustal Dynamics Project at the Goddard Space Flight Center, Greenbelt, Maryland, and for the NASA Deep Space Network. These instruments were developed to demonstrate that the variable path delay imposed on microwave radio transmissions by atmospheric water vapor can be calibrated, particularly as this phenomenon affects very long baseline interferometry measurement systems. Water vapor radiometry technology can also be used in systems that involve moist air meteorology and propagation studies

    Ultrafast Momentum Imaging of Pseudospin-Flip Excitations in Graphene

    Get PDF
    The pseudospin of Dirac electrons in graphene manifests itself in a peculiar momentum anisotropy for photo-excited electron-hole pairs. These interband excitations are in fact forbidden along the direction of the light polarization, and are maximum perpendicular to it. Here, we use time- and angle-resolved photoemission spectroscopy to investigate the resulting unconventional hot carrier dynamics, sampling carrier distributions as a function of energy and in-plane momentum. We first show that the rapidly-established quasi-thermal electron distribution initially exhibits an azimuth-dependent temperature, consistent with relaxation through collinear electron-electron scattering. Azimuthal thermalization is found to occur only at longer time delays, at a rate that depends on the substrate and the static doping level. Further, we observe pronounced differences in the electron and hole dynamics in n-doped samples. By simulating the Coulomb- and phonon-mediated carrier dynamics we are able to disentangle the influence of excitation fluence, screening, and doping, and develop a microscopic picture of the carrier dynamics in photo-excited graphene. Our results clarify new aspects of hot carrier dynamics that are unique to Dirac materials, with relevance for photo-control experiments and optoelectronic device applications.Comment: 23 pages, 12 figure

    Tracking primary thermalization events in graphene with photoemission at extreme timescales

    Full text link
    Direct and inverse Auger scattering are amongst the primary processes that mediate the thermalization of hot carriers in semiconductors. These two processes involve the annihilation or generation of an electron-hole pair by exchanging energy with a third carrier, which is either accelerated or decelerated. Inverse Auger scattering is generally suppressed, as the decelerated carriers must have excess energies higher than the band gap itself. In graphene, which is gapless, inverse Auger scattering is instead predicted to be dominant at the earliest time delays. Here, <8<8 femtosecond extreme-ultraviolet pulses are used to detect this imbalance, tracking both the number of excited electrons and their kinetic energy with time- and angle-resolved photoemission spectroscopy. Over a time window of approximately 25 fs after absorption of the pump pulse, we observe an increase in conduction band carrier density and a simultaneous decrease of the average carrier kinetic energy, revealing that relaxation is in fact dominated by inverse Auger scattering. Measurements of carrier scattering at extreme timescales by photoemission will serve as a guide to ultrafast control of electronic properties in solids for PetaHertz electronics.Comment: 16 pages, 8 figure

    Statistical properties of the GALEX spectroscopic stellar sample

    Full text link
    The GALEX General Data Release 4/5 includes 174 spectroscopic tiles, obtained from slitless grism observations, for a total of more than 60,000 ultraviolet spectra. We have determined statistical properties of the sample of GALEX stars. We have defined a suitable system of spectroscopic indices, which measure the main mid-UV features at the GALEX low spectral resolution and we have employed it to determine the atmospheric parameters of of stars in the range 4500<Teff<9000 K. Our preliminary results indicate that the sample is formed by a majority of main sequence F- and G-type stars, with metallicity [M/H]>-1 dex.Comment: 9 pages, 9 figures, accepted for publication in Astrophysics & Space Science, UV universe special issu

    TRANSFORMATIONAL LEADERSHIP OF POLICE COMMISSIONED OFFICERS AND SERVICE ENGAGEMENT OF NON-COMMISSIONED PERSONNEL: THE MEDIATING ROLE OF PERSONAL ETHICS

    Get PDF
    The purpose of this research study is to determine the service engagement of police personnel as a function of the transformation leadership of commissioned officers and mediated by their personal ethics. The researcher surveyed 348 Police Officers, selected using a stratified technique. Data were gathered using standardized, adapted instruments. Data were analyzed and interpreted using Mean, Pearson Product Moment Correlation, Medgraph using Sobel z-test, and Path-analysis. The study findings revealed as follow: the personal ethics of police personnel, transformational leadership of commissioned officers and service engagement of police personnel obtained a very high level. A significant correlation between the transformational leadership of commissioned officers and the service engagement of police personnel was observed. There is also a significant correlation between the transformational leadership of commissioned officers and the personal ethics of police officers; and, as well as the personal ethics and service engagement of police personnel. The test of mediation revealed that personal ethics partial mediates the relationship between transformational leadership of police commissioned officers and service engagement of personnel: the mediating role of personal ethics.  Article visualizations

    Customer integration and operational performance: The mediating role of information quality

    Get PDF
    Much supply chain integration literature tends to be biased towards its positive impact on operational performance. However, inconclusive results demand investigation of the mechanisms through which supply chain integration can lead to superior operational performance. The purpose of this study is to identify empirically the mediating role of information quality on the relationship between customer integration and operational performance, and the direct relationship between customer integration and operational performance. The study is based on a questionnaire sent to 228 manufacturing companies in the Republic of Ireland, and the relationships between the constructs are analyzed through regression analysis. The results indicate that information quality partially mediates the relationship between customer integration and quality, delivery and flexibility. Further, information quality was found to fully mediate the relationship between customer integration and cost

    A novel high resolution contactless technique for thermal field mapping and thermal conductivity determination: Two-Laser Raman Thermometry

    Get PDF
    We present a novel high resolution contactless technique for thermal conductivity determination and thermal field mapping based on creating a thermal distribution of phonons using a heating laser, while a second laser probes the local temperature through the spectral position of a Raman active mode. The spatial resolution can be as small as 300300 nm, whereas its temperature accuracy is ±2\pm 2 K. We validate this technique investigating the thermal properties of three free-standing single crystalline Si membranes with thickness of 250, 1000, and 2000 nm. We show that for 2-dimensional materials such as free-standing membranes or thin films, and for small temperature gradients, the thermal field decays as T(r)ln(r)T(r) \propto ln(r) in the diffusive limit. The case of large temperature gradients within the membranes leads to an exponential decay of the thermal field, Texp[Aln(r)]T \propto exp[-A \cdot ln(r)]. The results demonstrate the full potential of this new contactless method for quantitative determination of thermal properties. The range of materials to which this method is applicable reaches far beyond the here demonstrated case of Si, as the only requirement is the presence of a Raman active mode
    corecore