7,006 research outputs found

    The split-operator technique for the study of spinorial wavepacket dynamics

    Full text link
    The split-operator technique for wave packet propagation in quantum systems is expanded here to the case of propagating wave functions describing Schr\"odinger particles, namely, charge carriers in semiconductor nanostructures within the effective mass approximation, in the presence of Zeeman effect, as well as of Rashba and Dresselhaus spin-orbit interactions. We also demonstrate that simple modifications to the expanded technique allow us to calculate the time evolution of wave packets describing Dirac particles, which are relevant for the study of transport properties in graphene.Comment: 19 pages, 4 figure

    Pseudogap and the specific heat of high TcT_c superconductors

    Full text link
    The specific heat of a two dimensional repulsive Hubbard model with local interaction is investigated. We use the two-pole approximation which exhibits explicitly important correlations that are sources of the pseudogap anomaly. The interplay between the specific heat and the pseudogap is the main focus of the present work. Our self consistent numerical results show that above the occupation nT≈0.85n_T\approx 0.85, the specific heat starts to decrease due to the presence of a pseudogap in the density of states. We have also observed a two peak structure in the specific heat. Such structure is robust with respect to the Coulomb interaction UU but it is significantly affected by the occupation nTn_T. A detailed study of the two peak structure is carried out in terms of the renormalized quasi-particle bands. The role of the second nearest neighbor hopping on the specific heat behavior and on the pseudogap, is extensively discussed.Comment: 6 pages, 6 figures, accepted for publication in Solid State Communication

    Simplified model for the energy levels of quantum rings in single layer and bilayer graphene

    Full text link
    Within a minimal model, we present analytical expressions for the eigenstates and eigenvalues of carriers confined in quantum rings in monolayer and bilayer graphene. The calculations were performed in the context of the continuum model, by solving the Dirac equation for a zero width ring geometry, i.e. by freezing out the carrier radial motion. We include the effect of an external magnetic field and show the appearance of Aharonov-Bohm oscillations and of a non-zero gap in the spectrum. Our minimal model gives insight in the energy spectrum of graphene-based quantum rings and models different aspects of finite width rings.Comment: To appear in Phys. Rev.

    Wave packet dynamics and valley filter in strained graphene

    Full text link
    The time evolution of a wavepacket in strained graphene is studied within the tight-binding model and continuum model. The effect of an external magnetic field, as well as a strain-induced pseudo-magnetic field, on the wave packet trajectories and zitterbewegung are analyzed. Combining the effects of strain with those of an external magnetic field produces an effective magnetic field which is large in one of the Dirac cones, but can be practically zero in the other. We construct an efficient valley filter, where for a propagating incoming wave packet consisting of momenta around the K and K' Dirac points, the outgoing wave packet exhibits momenta in only one of these Dirac points, while the components of the packet that belong to the other Dirac point are reflected due to the Lorentz force. We also found that the zitterbewegung is permanent in time in the presence of either external or strain-induced magnetic fields, but when both the external and strain-induced magnetic fields are present, the zitterbewegung is transient in one of the Dirac cones, whereas in the other cone the wave packet exhibits permanent spatial oscillations.Comment: 13 pages, 10 figure

    Wavepacket scattering on graphene edges in the presence of a (pseudo) magnetic field

    Full text link
    The scattering of a Gaussian wavepacket in armchair and zigzag graphene edges is theoretically investigated by numerically solving the time dependent Schr\"odinger equation for the tight-binding model Hamiltonian. Our theory allows to investigate scattering in reciprocal space, and depending on the type of graphene edge we observe scattering within the same valley, or between different valleys. In the presence of an external magnetic field, the well know skipping orbits are observed. However, our results demonstrate that in the case of a pseudo-magnetic field, induced by non-uniform strain, the scattering by an armchair edge results in a non-propagating edge state.Comment: 8 pages, 7 figure
    • …
    corecore