31 research outputs found
IRREVERSIBILITY ANALYSIS IN Al2O3-WATER NANOFLUID FLOW WITH VARIABLE PROPERTY
The present numerical work deals with the optimization of the micro-channel heat sink using irreversibility analysis. The nanofluid of Al2O3-water with the different nanoparticles concentration and the temperature-dependent property is chosen as a coolant. The flow is considered as fully developed, steady, and laminar in the constant cross-section of circular channels. Navier-Stokes and energy equations are solved for a single-phase flow with total mass flow rate and heat flow rate as constant. The objective functions related to the frictional and heat transfer irreversibilities are framed to assess the performance of the micro-channel heat sink. The optimum channel diameter corresponding to the optimum number of channels is determined at the lowest total irreversibility for both constant property solution and variable property solution. Designed optimum diameter is observed maximum for 2.5% Al2O3-water nanofluid with μ(T) variation followed by 1% Al2O3-water nanofluid with μ(T) variation, 2.5% Al2O3-water nanofluid with constant property solution, and 1% Al2O3-water nanofluid with constant property solution
Video Based Deep CNN Model for Depression Detection
Our face reflects our feelings towards anything and everything we see, smell, teste or feel through any of our senses. Hence multiple attempts have been made since last few decades towards understanding the facial expressions. Emotion detection has numerous applications since Safe Driving, Health Monitoring Systems, Marketing and Advertising etc. We propose an Automatic Depression Detection (ADD) system based on Facial Expression Recognition (FER).
We propose a model to optimize the FER system for understanding seven basic emotions (joy, sadness, fear, anger, surprise, disgust and neutral) and use it for detection of Depression Level in the subject. The proposed model will detect if a person is in depression and if so, up to what extent. Our model will be based on a Deep Convolution Neural Network (DCNN)
Taguchi based Design of Sequential Convolution Neural Network for Classification of Defective Fasteners
Fasteners play a critical role in securing various parts of machinery.
Deformations such as dents, cracks, and scratches on the surface of fasteners
are caused by material properties and incorrect handling of equipment during
production processes. As a result, quality control is required to ensure safe
and reliable operations. The existing defect inspection method relies on manual
examination, which consumes a significant amount of time, money, and other
resources; also, accuracy cannot be guaranteed due to human error. Automatic
defect detection systems have proven impactful over the manual inspection
technique for defect analysis. However, computational techniques such as
convolutional neural networks (CNN) and deep learning-based approaches are
evolutionary methods. By carefully selecting the design parameter values, the
full potential of CNN can be realised. Using Taguchi-based design of
experiments and analysis, an attempt has been made to develop a robust
automatic system in this study. The dataset used to train the system has been
created manually for M14 size nuts having two labeled classes: Defective and
Non-defective. There are a total of 264 images in the dataset. The proposed
sequential CNN comes up with a 96.3% validation accuracy, 0.277 validation loss
at 0.001 learning rate.Comment: 13 pages, 6 figure
Mapping geographical inequalities in childhood diarrhoeal morbidity and mortality in low-income and middle-income countries, 2000–17 : analysis for the Global Burden of Disease Study 2017
Background
Across low-income and middle-income countries (LMICs), one in ten deaths in children younger than 5 years is attributable to diarrhoea. The substantial between-country variation in both diarrhoea incidence and mortality is attributable to interventions that protect children, prevent infection, and treat disease. Identifying subnational regions with the highest burden and mapping associated risk factors can aid in reducing preventable childhood diarrhoea.
Methods
We used Bayesian model-based geostatistics and a geolocated dataset comprising 15 072 746 children younger than 5 years from 466 surveys in 94 LMICs, in combination with findings of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017, to estimate posterior distributions of diarrhoea prevalence, incidence, and mortality from 2000 to 2017. From these data, we estimated the burden of diarrhoea at varying subnational levels (termed units) by spatially aggregating draws, and we investigated the drivers of subnational patterns by creating aggregated risk factor estimates.
Findings
The greatest declines in diarrhoeal mortality were seen in south and southeast Asia and South America, where 54·0% (95% uncertainty interval [UI] 38·1–65·8), 17·4% (7·7–28·4), and 59·5% (34·2–86·9) of units, respectively, recorded decreases in deaths from diarrhoea greater than 10%. Although children in much of Africa remain at high risk of death due to diarrhoea, regions with the most deaths were outside Africa, with the highest mortality units located in Pakistan. Indonesia showed the greatest within-country geographical inequality; some regions had mortality rates nearly four times the average country rate. Reductions in mortality were correlated to improvements in water, sanitation, and hygiene (WASH) or reductions in child growth failure (CGF). Similarly, most high-risk areas had poor WASH, high CGF, or low oral rehydration therapy coverage.
Interpretation
By co-analysing geospatial trends in diarrhoeal burden and its key risk factors, we could assess candidate drivers of subnational death reduction. Further, by doing a counterfactual analysis of the remaining disease burden using key risk factors, we identified potential intervention strategies for vulnerable populations. In view of the demands for limited resources in LMICs, accurately quantifying the burden of diarrhoea and its drivers is important for precision public health
Mapping local patterns of childhood overweight and wasting in low- and middle-income countries between 2000 and 2017
A double burden of malnutrition occurs when individuals, household members or communities experience both undernutrition and overweight. Here, we show geospatial estimates of overweight and wasting prevalence among children under 5 years of age in 105 low- and middle-income countries (LMICs) from 2000 to 2017 and aggregate these to policy-relevant administrative units. Wasting decreased overall across LMICs between 2000 and 2017, from 8.4% (62.3 (55.1–70.8) million) to 6.4% (58.3 (47.6–70.7) million), but is predicted to remain above the World Health Organization’s Global Nutrition Target of <5% in over half of LMICs by 2025. Prevalence of overweight increased from 5.2% (30 (22.8–38.5) million) in 2000 to 6.0% (55.5 (44.8–67.9) million) children aged under 5 years in 2017. Areas most affected by double burden of malnutrition were located in Indonesia, Thailand, southeastern China, Botswana, Cameroon and central Nigeria. Our estimates provide a new perspective to researchers, policy makers and public health agencies in their efforts to address this global childhood syndemic
Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021
This online publication has been
corrected. The corrected version
first appeared at thelancet.com
on September 28, 2023BACKGROUND : Diabetes is one of the leading causes of death and disability worldwide, and affects people regardless of country, age group, or sex. Using the most recent evidentiary and analytical framework from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD), we produced location-specific, age-specific, and sex-specific estimates of diabetes prevalence and burden from 1990 to 2021, the proportion of type 1 and type 2 diabetes in 2021, the proportion of the type 2 diabetes burden attributable to selected risk factors, and projections of diabetes prevalence through 2050. METHODS : Estimates of diabetes prevalence and burden were computed in 204 countries and territories, across 25 age groups, for males and females separately and combined; these estimates comprised lost years of healthy life, measured in disability-adjusted life-years (DALYs; defined as the sum of years of life lost [YLLs] and years lived with disability [YLDs]). We used the Cause of Death Ensemble model (CODEm) approach to estimate deaths due to diabetes, incorporating 25 666 location-years of data from vital registration and verbal autopsy reports in separate total (including both type 1 and type 2 diabetes) and type-specific models. Other forms of diabetes, including gestational and monogenic diabetes, were not explicitly modelled. Total and type 1 diabetes prevalence was estimated by use of a Bayesian meta-regression modelling tool, DisMod-MR 2.1, to analyse 1527 location-years of data from the scientific literature, survey microdata, and insurance claims; type 2 diabetes estimates were computed by subtracting type 1 diabetes from total estimates. Mortality and prevalence estimates, along with standard life expectancy and disability weights, were used to calculate YLLs, YLDs, and DALYs. When appropriate, we extrapolated estimates to a hypothetical population with a standardised age structure to allow comparison in populations with different age structures. We used the comparative risk assessment framework to estimate the risk-attributable type 2 diabetes burden for 16 risk factors falling under risk categories including environmental and occupational factors, tobacco use, high alcohol use, high body-mass index (BMI), dietary factors, and low physical activity. Using a regression framework, we forecast type 1 and type 2 diabetes prevalence through 2050 with Socio-demographic Index (SDI) and high BMI as predictors, respectively. FINDINGS : In 2021, there were 529 million (95% uncertainty interval [UI] 500–564) people living with diabetes worldwide, and the global age-standardised total diabetes prevalence was 6·1% (5·8–6·5). At the super-region level, the highest age-standardised rates were observed in north Africa and the Middle East (9·3% [8·7–9·9]) and, at the regional level, in Oceania (12·3% [11·5–13·0]). Nationally, Qatar had the world’s highest age-specific prevalence of diabetes, at 76·1% (73·1–79·5) in individuals aged 75–79 years. Total diabetes prevalence—especially among older adults—primarily reflects type 2 diabetes, which in 2021 accounted for 96·0% (95·1–96·8) of diabetes cases and 95·4% (94·9–95·9) of diabetes DALYs worldwide. In 2021, 52·2% (25·5–71·8) of global type 2 diabetes DALYs were attributable to high BMI. The contribution of high BMI to type 2 diabetes DALYs rose by 24·3% (18·5–30·4) worldwide between 1990 and 2021. By 2050, more than 1·31 billion (1·22–1·39) people are projected to have diabetes, with expected age-standardised total diabetes prevalence rates greater than 10% in two super-regions: 16·8% (16·1–17·6) in north Africa and the Middle East and 11·3% (10·8–11·9) in Latin America and Caribbean. By 2050, 89 (43·6%) of 204 countries and territories will have an age-standardised rate greater than 10%. INTERPRETATION : Diabetes remains a substantial public health issue. Type 2 diabetes, which makes up the bulk of diabetes cases, is largely preventable and, in some cases, potentially reversible if identified and managed early in the disease course. However, all evidence indicates that diabetes prevalence is increasing worldwide, primarily due to a rise in obesity caused by multiple factors. Preventing and controlling type 2 diabetes remains an ongoing challenge. It is essential to better understand disparities in risk factor profiles and diabetes burden across populations, to inform strategies to successfully control diabetes risk factors within the context of multiple and complex drivers.Bill & Melinda Gates Foundation.http://www.thelancet.comam2024School of Health Systems and Public Health (SHSPH)SDG-03:Good heatlh and well-bein
Mapping local patterns of childhood overweight and wasting in low- and middle-income countries between 2000 and 2017
A double burden of malnutrition occurs when individuals, household members or communities experience both undernutrition and overweight. Here, we show geospatial estimates of overweight and wasting prevalence among children under 5 years of age in 105 low- and middle-income countries (LMICs) from 2000 to 2017 and aggregate these to policy-relevant administrative units. Wasting decreased overall across LMICs between 2000 and 2017, from 8.4 (62.3 (55.1�70.8) million) to 6.4 (58.3 (47.6�70.7) million), but is predicted to remain above the World Health Organization�s Global Nutrition Target of <5 in over half of LMICs by 2025. Prevalence of overweight increased from 5.2 (30 (22.8�38.5) million) in 2000 to 6.0 (55.5 (44.8�67.9) million) children aged under 5 years in 2017. Areas most affected by double burden of malnutrition were located in Indonesia, Thailand, southeastern China, Botswana, Cameroon and central Nigeria. Our estimates provide a new perspective to researchers, policy makers and public health agencies in their efforts to address this global childhood syndemic. © 2020, The Author(s)
Author Correction: Mapping local patterns of childhood overweight and wasting in low- and middle-income countries between 2000 and 2017 (Nature Medicine, (2020), 26, 5, (750-759), 10.1038/s41591-020-0807-6)
An amendment to this paper has been published and can be accessed via a link at the top of the paper. © 2020, The Author(s)
Author Correction: Mapping local patterns of childhood overweight and wasting in low- and middle-income countries between 2000 and 2017 (Nature Medicine, (2020), 26, 5, (750-759), 10.1038/s41591-020-0807-6)
An amendment to this paper has been published and can be accessed via a link at the top of the paper. © 2020, The Author(s)
Falcipain-1, a Plasmodium falciparum Cysteine Protease with Vaccine Potential
Cysteine proteases (falcipains) of Plasmodium falciparum are potential targets for antimalarial chemotherapy, since they have been shown to be involved in important cellular functions such as hemoglobin degradation and invasion/rupture of red blood cells during parasite life cycle. The role of falcipain-1 at the asexual blood stages of the parasite still remains uncertain. This is mainly due to a lack of methods to prepare this protein in an active form. In order to obtain biologically active falcipain-1, a number of falcipain-1 constructs were designed and a systematic assessment of the refolding conditions was done. We describe here the expression, purification, and characterization of a falcipain-1 construct encoding mature falcipain-1 and 35 amino acids from the C-terminal of the pro domain. Recombinant falcipain-1 was overexpressed in the form of inclusion bodies, solubilized, and purified by Ni(2+)-nitrilotriacetic acid affinity chromatography under denaturing conditions. A systemic approach was then followed to optimize refolding parameters. An optimum refolding condition was obtained, and the yield of the purified refolded falcipain-1 was ∼1 mg/liter. Activity of the protein was analyzed by fluorometric and gelatin degradation assays. Immunolocalization studies using anti-falcipain-1 sera revealed a distinct staining at the apical end of the P. falciparum merozoites. Previous studies using falcipain-1-specific inhibitors have suggested a role of falcipain-1 in merozoite invasion. Based on its localization and its role in invasion, we analyzed the immunogenicity of falcipain-1 in mice, followed by heterologous challenge with Plasmodium yoelii sporozoites. Our results suggest a possible role of falcipain-1 in merozoite invasion