9,923 research outputs found

    Predictions from non trivial Quark-Lepton complementarity

    Full text link
    The complementarity between the quark and lepton mixing matrices is shown to provide robust predictions. We obtain these predictions by first showing that the matrix V_M, product of the quark (CKM) and lepton (PMNS) mixing matrices, may have a zero (1,3) entry which is favored by experimental data. We obtain that any theoretical model with a vanishing (1,3) entry of V_M that is in agreement with quark data, solar, and atmospheric mixing angle leads to θ13PMNS=(9−2+1)∘\theta_{13}^{PMNS}=(9{^{+1}_{-2}})^\circ. This value is consistent with the present 90% CL experimental upper limit. We also investigate the prediction on the lepton phases. We show that the actual evidence, under the only assumption that the correlation matrix V_M product of CKM and PMNS has a zero in the entry (1,3), gives us a prediction for the three CP-violating invariants J, S_1, and S_2. A better determination of the lepton mixing angles will give stronger prediction for the CP-violating invariants in the lepton sector. These will be tested in the next generation experiments. Finally we compute the effect of non diagonal neutrino mass in "l_i -> l_j gamma" in SUSY theories with non trivial Quark-Lepton complementarity and a flavor symmetry. The Quark-Lepton complementarity and the flavor symmetry strongly constrain the theory and we obtain a clear prediction for the contribution to "mu -> e gamma" and the "tau" decays "tau -> e gamma" and "tau -> mu gamma". If the Dirac neutrino Yukawa couplings are degenerate but the low energy neutrino masses are not degenerate, then the lepton decays are related among them by the V_M entries. On the other hand, if the Dirac neutrino Yukawa couplings are hierarchical or the low energy neutrino masses are degenerate, then the prediction for the lepton decays comes from the CKM hierarchy.Comment: 15 pages, 5 figures, ws-ijmpa class included, Proceedings of the CTP Symposium on Sypersymmetry at LH

    Two Gallium data sets, spin flavour precession and KamLAND

    Full text link
    We reexamine the possibility of a time modulation of the low energy solar neutrino flux which is suggested by the average decrease of the Ga data in line with our previous arguments. We perform two separate fits to the solar neutrino data, one corresponding to 'high' and the other to 'low' Ga data, associated with low and high solar activity respectively. We therefore consider an alternative to the conventional solar+KamLAND fitting, which allows one to explore the much wider range of the θ12\theta_{12} angle permitted by the KamLAND fitting alone. We find a solution with parameters Δm212=8.2×10−5eV2,tan2θ=0.31\Delta m^2_{21}=8.2\times 10^{-5} eV^2, tan^{2}\theta=0.31 in which the 'high' and the 'low' Ga rates lie far apart and are close to their central values and is of comparable quality to the global best fit, where these rates lie much closer to each other. This is an indication that the best fit in which all solar and KamLAND data are used is not a good measure of the separation of the two Ga data sets, as the information from the low energy neutrino modulation is dissimulated in the wealth of data. Furthermore for the parameter set proposed one obtains an equally good fit to the KamLAND energy spectrum and an even better fit than the 'conventional' LMA one for the reactor antineutrino survival probability as measured by KamLAND.Comment: V2: 15 pages, 3 eps figures, fit improved, final version to appear in Journal of Physics

    QQˉQ\bar Q (Q∈{b,c}Q\in \{b, c\}) spectroscopy using Cornell potential

    Full text link
    The mass spectra and decay properties of heavy quarkonia are computed in nonrelativistic quark-antiquark Cornell potential model. We have employed the numerical solution of Schr\"odinger equation to obtain their mass spectra using only four parameters namely quark mass (mcm_c, mbm_b) and confinement strength (AccˉA_{c\bar c}, AbbˉA_{b\bar b}). The spin hyperfine, spin-orbit and tensor components of the one gluon exchange interaction are computed perturbatively to determine the mass spectra of excited SS, PP, DD and FF states. Digamma, digluon and dilepton decays of these mesons are computed using the model parameters and numerical wave functions. The predicted spectroscopy and decay properties for quarkonia are found to be consistent with available experimental observations and results from other theoretical models. We also compute mass spectra and life time of the BcB_c meson without additional parameters. The computed electromagnetic transition widths of heavy quarkonia and BcB_c mesons are in tune with available experimental data and other theoretical approaches

    Effect of labile inorganic phosphate status and organic carbon additions on the microbial uptake of phosphorus in soils

    Get PDF
    Includes bibliographical references (pages 384-385).Abstract in English and French.The effect of labile inorganic phosphate (Pi) status of the soil on the decomposition of added cellulose and on the immobilization, mineralization, and redistribution of native and added P in soils was studied in a greenhouse incubation experiment. Cellulose was added at 765 μg C∙g−1 soil with and without P (9 μg∙g−1 soil) every 30 days under adequate N, H2O, and constant tempreature to two soils of different available P status. Lack of P eventually slowed down decomposition of added C, but this effect was partially compensated for by increased mineralization of organic P (Po) forms. Added P was redistributed to both P, (58–69%) and Po (42–31%) forms; higher amounts of Po were found in the soil with the highest Pi status. The correlation between microbial P uptake and solution P values was significant, and microbial C:P ratios ranged from 12:1 under high available P conditions to 45:1 where P was in low supply

    Effect of carbon additions on soil labile inorganic, organic and microbially held phosphate

    Get PDF
    Includes bibliographical references (page 396).Investigations of the rate of P movement between soil inorganic, organic and biomass P compartments were carried out to clarify aspects of P cycling in soil systems. Organic carbon, as dried grass (33% C, 0.11% P) and cellulose (43% C), was added at a rate equivalent to 4000 kg organic material (OM)∙ha−1 every 30 days for 9 mo to the Ap horizon of a Chernozemic Black soil kept at field capacity moisture content and 24 ± 2 °C. In a third treatment, cellulose was added at the same rate with P (20 kg∙ha−1) at KH2PO4. Approximately 39% and 22% of the P added in grass and with cellulose, respectively, was found in organic P forms after 9 mo incubation. The remainder was found in NH4Cl-, NH4F- and NaOH-NaCl-extractable P forms which constituted part of the labile inorganic P pool and could be extracted by an anion exchange resin. Increases of biomass P during the first 4 or 5 days of each incubation period after residue addition were found to average 12 μg P∙g−1 in the first 3 mo incubation period. After this period, there was a smaller response in microbial P attributable to additions of grass or cellulose

    THE VELOCITY DEPENDENCE OF TECHNNIQUES COMMONLY LINKED WITH LOWER BACK INJURY IN CRICKET FAST BOWLING

    Get PDF
    The aim of this study was to examine the velocity dependence of shoulder alignment counter rotation, maximum hip-shoulder separation angle, maximum front knee flexion angle and maximum trunk lateral flexion. High-performance fast bowlers (n=17) were required to bowl multiple deliveries in a fast, normal and slower ball category. No statistical association was found between bowling velocity and maximum shoulder counter rotation or knee flexion. Significant associations were found between ball release velocity and trunk lateral flexion and maximum hip-shoulder separation angle. Significant differences were found between the bowling categories for separation angle and knee flexion. A regression analysis showed that trunk lateral flexion and separation angle only accounted for 11% of the ball velocity variance, for the normal delivery (31.3 ms-1)

    Oxytocin versus Misoprostol used as an induction of labour in term in early rupture of Amniotic membranes

    Get PDF
    Background: Pre labor Rupture of membranes is a common obstetrical problem, significant event as it transforms an ordinary pregnancy into a high risk one. Majority of cases of PROM - of about 60% occur after 37 completed weeks Induction of labour is artificial. Misoprostol is receiving attention as a cervical modifier and labour induction agent. This study compares the safety and efficacy of Misoprostol with Oxytocin in labour induction in term pre labour rupture of membranes. Objective of this study was to compare the safety and efficacy of Misoprostol with that of Oxytocin in labour induction in PROM. The effects were compared between primipara and multipara in a selected sample.Methods: General condition is assessed by pulse rate, blood pressure, height, weight with particular attention to pedal odema, anemia. Cardiovascular and respiratory systems were examined, rule out cephalo pelvic disproportion and for Bishop’s scoring. USG for foetal maturity, Liquor status and for foetal well-being. Admission CTG.Results: There is no significant difference was observed between two groups either in vaginal delivery or in incidence of LSCS. Mean induction delivery interval in misoprostol group for nullipara is 8.5 hours. For multipara it is 6.6 hours. And in oxytocin group for nullipara is 10:4 hours. In multipara it is 6.5 for primipara it was significantly reduced in misoprostol group compared to syntocinon group.Conclusions: Misoprostol is an effective, cheap, safe, stable at room temperature and easy to use if it is used in appropriate dosage for induction of labour in pre-labour rupture of membranes at term

    Multiwavelength Study of NGC 281 Region

    Get PDF
    We present a multiwavelength study of the NGC 281 complex which contains the young cluster IC 1590 at the center, using deep wide-field optical UBVI_c photometry, slitless spectroscopy along with archival data sets in the near-infrared (NIR) and X-ray. The extent of IC 1590 is estimated to be ~6.5 pc. The cluster region shows a relatively small amount of differential reddening. The majority of the identified young stellar objects (YSOs) are low mass PMS stars having age <1-2 Myr and mass 0.5-3.5 M_\odot. The slope (\Gamma) of the mass function for IC 1590, in the mass range 2 < M/M_\odot \le 54, is found to be -1.11+-0.15. The slope of the K-band luminosity function (0.37+-0.07) is similar to the average value (~0.4) reported for young clusters. The distribution of gas and dust obtained from the IRAS, CO and radio maps indicates clumpy structures around the central cluster. The radial distribution of the young stellar objects, their ages, \Delta(H-K) NIR-excess, and the fraction of classical T Tauri stars suggest triggered star formation at the periphery of the cluster region. However, deeper optical, NIR and MIR observations are needed to have a conclusive view of star formation scenario in the region. The properties of the Class 0/I and Class II sources detected by using the Spitzer mid-infrared observations indicate that a majority of the Class II sources are X-ray emitting stars, whereas X-ray emission is absent from the Class 0/I sources. The spatial distribution of Class 0/I and Class II sources reveals the presence of three sub-clusters in the NGC 281 West region.Comment: 29 pages, 21 figures and 11 tables, Accepted for the publication in PAS

    Comparative Analysis of Super-Kamiokande and SNO Solar-Neutrino Data and the Photospheric Magnetic Field

    Get PDF
    We analyze Super-Kamiokande, SNO, and photospheric magnetic-field data for the common time interval, namely the SNO D2O phase. Concerning rotational modulation, the magnetic-field power spectrum shows the strongest peaks at the second and sixth harmonics of the solar synodic rotation frequency [3 nu(rot) and 7 nu(rot)]. The restricted Super-Kamiokande dataset shows strong modulation at the second harmonic. The SNO D2O dataset shows weak modulation at that frequency, but strong modulation in the sixth-harmonic frequency band. We estimate the significance level of the correspondence of the Super-Kamiokande second-harmonic peak with the corresponding magnetic-field peak to be 0.0004, and the significance level of the correspondence of the SNO D2O sixth-harmonic peak with the corresponding magnetic-field peak to be 0.009. By estimating the amplitude of the modulation of the solar neutrino flux at the second harmonic from the restricted Super-Kamiokande dataset, we find that the weak power at that frequency in the SNO D2O power spectrum is not particularly surprising. Concerning 9.43 yr-1, we find no peak at this frequency in the power spectrum formed from the restricted Super-Kamiokande dataset, so it is no surprise that this peak does not show up in the SNO D2O dataset, either.Comment: 32 pages, 8 tables, 16 figure
    • …
    corecore