5,725 research outputs found

    Transverse energy distributions and J/ψJ/\psi production in Pb+Pb collisions

    Get PDF
    We have analyzed the latest NA50 data on transverse energy distributions and J/ψJ/\psi suppression in Pb+Pb collisions. The transverse energy distribution was analysed in the geometric model of AA collisions. In the geometric model, fluctuations in the number of NN collisions at fixed impact parameter are taken into account. Analysis suggests that in Pb+Pb collisions, individual NN collisions produces less , than in other AA collisions. The nucleons are more transparent in Pb+Pb collisions. The transverse energy dependence of the J/ψJ/\psi suppression was obtained following the model of Blaizot et al, where charmonium suppression is assumed to be 100% effective above a threshold density. With fluctuations in number of NN collisions taken into account, good fit to the data is obtained, with a single parameter, the threshold density.Comment: Revised version with better E_T fit. 4 pages, 2 figure

    Jamming transitions in amorphous packings of frictionless spheres occur over a continuous range of volume fractions

    Full text link
    We numerically produce fully amorphous assemblies of frictionless spheres in three dimensions and study the jamming transition these packings undergo at large volume fractions. We specify four protocols yielding a critical value for the jamming volume fraction which is sharply defined in the limit of large system size, but is different for each protocol. Thus, we directly establish the existence of a continuous range of volume fraction where nonequilibrium jamming transitions occur. However, these jamming transitions share the same critical behaviour. Our results suggest that, even in the absence of partial crystalline ordering, a unique location of a random close packing does not exist, and that volume fraction alone is not sufficient to describe the properties of jammed states.Comment: 5 pages, 3 fig

    Differentially Private Model Selection with Penalized and Constrained Likelihood

    Full text link
    In statistical disclosure control, the goal of data analysis is twofold: The released information must provide accurate and useful statistics about the underlying population of interest, while minimizing the potential for an individual record to be identified. In recent years, the notion of differential privacy has received much attention in theoretical computer science, machine learning, and statistics. It provides a rigorous and strong notion of protection for individuals' sensitive information. A fundamental question is how to incorporate differential privacy into traditional statistical inference procedures. In this paper we study model selection in multivariate linear regression under the constraint of differential privacy. We show that model selection procedures based on penalized least squares or likelihood can be made differentially private by a combination of regularization and randomization, and propose two algorithms to do so. We show that our private procedures are consistent under essentially the same conditions as the corresponding non-private procedures. We also find that under differential privacy, the procedure becomes more sensitive to the tuning parameters. We illustrate and evaluate our method using simulation studies and two real data examples

    Stability Analysis of VSC MTDC Grids Connected to Multimachine AC Systems

    Get PDF

    Low-Mass Dileptons at the CERN-SpS: Evidence for Chiral Restoration?

    Get PDF
    Using a rather complete description of the in-medium ρ\rho spectral function - being constrained by various independent experimental information - we calculate pertinent dilepton production rates from hot and dense hadronic matter. The strong broadening of the ρ\rho resonance entails a reminiscence to perturbative qqˉq\bar q annihilation rates in the vicinity of the phase boundary. The application to dilepton observables in Pb(158AGeV)+Au collisions - incorporating recent information on the hadro-chemical composition at CERN-SpS energies - essentially supports the broadening scenario. Possible implications for the nature of chiral symmetry restoration are outlined.Comment: 6 pages ReVTeX including 5 eps-figure

    J/ψJ/\psi suppression in Pb+Pb collisions and pTp_T broadening

    Full text link
    We have analysed the NA50 data, on the centrality dependence of pTp_T broadening of J/ψJ/\psi's, in Pb+Pb collisions, at the CERN-SPS. The data were analysed in a QCD based model, where J/ψJ/\psi's are suppressed in 'nuclear' medium. Without any free parameter, the model could explain the NA50 pTp_T broadening data. The data were also analysed in a QGP based threshold model, where J/ψJ/\psi suppression is 100% above a critical density. The QGP based model could not explain the NA50 pTp_T broadening data. We have also predicted the centrality dependence of J/ψJ/\psi suppression and pTp_T broadening at RHIC energy. Both the models, the QGP based threshold model and the QCD based nuclear absorption model, predict pTp_T broadening very close to each other.Comment: The paper was completely revised. The conclusion is also changed. 5 pages, 4 figure

    The (2√3×3)rect. phase of alkylthiolate self-assembled monolayers on Au(111): a symmetry-constrained structural solution

    Get PDF
    Low-energy electron-diffraction (LEED) patterns of the Au(111)(2√3×3)rect.-butylthiolate surface phase (a structure also seen in longer alkane chain thiolate self-assembled monolayers) show missing diffracted beams characteristic of glide symmetry, but do not show the larger set of missing beams found in surface x-ray diffraction (SXRD). The difference can be attributed to the greatly enhanced role of multiple scattering in LEED, but the combination of symmetry constraints placed on possible structural models by the observed SXRD and LEED beam extinctions greatly reduces the number of possible structural models. Only three such models are identified, one of which is clearly incompatible with other published experimental data. The relative merits of the remaining models, both involving Au adatom-thiolate moieties, are discussed in the light of the results of previous experimental studies
    corecore