5 research outputs found

    Cardiac sodium channel inhibition by lamotrigine: in vitro characterization and clinical implications

    Get PDF
    Lamotrigine, approved for use as an antiseizure medication (ASM) as well as the treatment of bipolar disorder, inhibits sodium channels in the brain to reduce repetitive neuronal firing and pathological release of glutamate. The shared homology of sodium channels and lack of selectivity associated with channel blocking agents can cause slowing of cardiac conduction and increased proarrhythmic potential. The Vaughan-Williams classification system differentiates sodium channel blockers using biophysical properties of binding. As such, Class Ib inhibitors including mexiletine do not slow cardiac conduction as measured by the electrocardiogram (ECG), at therapeutically relevant exposure. Our goal was to characterize the biophysical properties of NaV 1.5 block and to support the observed clinical safety of lamotrigine. We used HEK-293 cells stably expressing the hNaV 1.5 channel and voltage clamp electrophysiology to quantify the potency (IC50 ) against peak and late channel current, on-/off-rate binding kinetics, voltage-dependence and tonic block of the cardiac sodium channel by lamotrigine; and compared to clinically relevant Class Ia (quinidine), Ib (mexiletine) and Ic (flecainide) inhibitors. Lamotrigine blocked peak and late NaV 1.5 current at therapeutically relevant exposure, with rapid kinetics and biophysical properties similar to the Class Ib inhibitor mexiletine. However, no clinically meaningful prolongation in QRS or PR interval was observed in healthy subjects in a new analysis of a previously reported thorough QT clinical trial (SCA104648). In conclusion, the weak NaV 1.5 block and rapid kinetics do not translate into clinically relevant conduction slowing at therapeutic exposure and support the clinical safety of lamotrigine in patients suffering from epilepsy and bipolar disorder

    Applying the CiPA approach to evaluate cardiac proarrhythmia risk of some antimalarials used off‐label in the first wave of COVID‐19

    No full text
    We applied a set of in silico and in vitro assays, compliant with the CiPA (Comprehensive In Vitro Proarrhythmia Assay) paradigm, to assess the risk of chloroquine or hydroxychloroquine‐mediated QT prolongation and Torsades de Pointes (TdP), alone and combined with erythromycin and azithromycin, drugs repurposed during the first wave of COVID‐19. Each drug or drug combination was tested in patch clamp assays on 7 cardiac ion channels, in in silico models of human ventricular electrophysiology (Virtual AssayÂź) using control (healthy) or high‐risk cell populations, and in human induced pluripotent stem cell (hiPSC)‐derived cardiomyocytes. In each assay, concentration‐response curves encompassing and exceeding therapeutic free plasma levels were generated. Both chloroquine and hydroxychloroquine showed blocking activity against some potassium, sodium and calcium currents. Chloroquine and hydroxychloroquine inhibited IKr (IC50: 1”M and 3‐7”M, respectively) and IK1 currents (IC50: 5 and 44”M, respectively). When combining hydroxychloroquine with azithromycin, no synergistic effects were observed. The two macrolides had no or very weak effects on the ion currents (IC50>300‐1000”M). Using Virtual AssayÂź, both antimalarials affected several TdP indicators, chloroquine being more potent than hydroxychloroquine. Effects were more pronounced in the high‐risk cell population. In hiPSC‐derived cardiomyocytes, all drugs showed early‐after‐depolarizations, except azithromycin. Combining chloroquine or hydroxychloroquine with a macrolide did not aggravate their effects. In conclusion, our integrated nonclinical CiPA dataset confirmed that, at therapeutic plasma concentrations relevant for malaria or off‐label use in COVID‐19, chloroquine and hydroxychloroquine use is associated with a proarrhythmia risk, which is higher in populations carrying predisposing factors but not worsened with macrolide combination
    corecore