2 research outputs found
Enhanced Fractional Adaptive Processing Paradigm for Power Signal Estimation
Fractional calculus tools have been exploited to effectively model variety of engineering, physics and applied sciences problems. The concept of fractional derivative has been incorporated in the optimization process of least mean square (LMS) iterative adaptive method. This study exploits the recently introduced enhanced fractional derivative based LMS (EFDLMS) for parameter estimation of power signal formed by the combination of different sinusoids. The EFDLMS addresses the issue of fractional extreme points and provides faster convergence speed. The performance of EFDLMS is evaluated in detail by taking different levels of noise in the composite sinusoidal signal as well as considering various fractional orders in the EFDLMS. Simulation results reveal that the EDFLMS is faster in convergence speed than the conventional LMS (i.e., EFDLMS for unity fractional order)
Design of auxiliary model based normalized fractional gradient algorithm for nonlinear output-error systems
A new avenue of fractional calculus applications has emerged that investigates the design of fractional gradient based novel iterative methods for analyzing fractals and nonlinear dynamics in solving engineering and applied sciences problems. The most discussed algorithm in this regard is fractional least mean square (FLMS) algorithm. This study presents an auxiliary model based normalized variable initial value FLMS (AM-NVIV-FLMS) algorithm for input nonlinear output error (INOE) system identification. First, NVIV-FLMS is presented to automatically tune the learning rate parameter of VIV-FLMS and then the AM-NVIV-FLMS is introduced by incorporating the auxiliary model idea that replaces the unknown values of the information vector with the output of auxiliary model. The proposed AM-NVIV-FLMS scheme is accurate, convergent, robust and reliable for INOE system identification. Simulation results validate the significance and efficacy of the proposed scheme.info:eu-repo/semantics/publishedVersio