332 research outputs found
A flexible routing scheme for patients with topographical disorientation
<p>Abstract</p> <p>Background</p> <p>Individuals with topographical disorientation have difficulty navigating through indoor environments. Recent literature has suggested that ambient intelligence technologies may provide patients with navigational assistance through auditory or graphical instructions delivered via embedded devices.</p> <p>Method</p> <p>We describe an automatic routing engine for such an ambient intelligence system. The method routes patients with topographical disorientation through indoor environments by repeatedly computing the route of minimal cost from the current location of the patient to a specified destination. The cost of a given path not only reflects the physical distance between end points, but also incorporates individual patient abilities, the presence of mobility-impeding physical barriers within a building and the dynamic nature of the indoor environment. We demonstrate the method by routing simulated patients with either topographical disorientation or physical disabilities. Additionally, we exemplify the ability to route a patient from source to destination while taking into account changes to the building interior.</p> <p>Results</p> <p>When compared to a random walk, the proposed routing scheme offers potential cost-savings even when the patient follows only a subset of instructions.</p> <p>Conclusion</p> <p>The routing method presented reduces the navigational effort for patients with topographical disorientation in indoor environments, accounting for physical abilities of the patient, environmental barriers and dynamic building changes. The routing algorithm and database proposed could be integrated into wearable and mobile platforms within the context of an ambient intelligence solution.</p
Managing variability in the summary and comparison of gait data
Variability in quantitative gait data arises from many potential sources, including natural temporal dynamics of neuromotor control, pathologies of the neurological or musculoskeletal systems, the effects of aging, as well as variations in the external environment, assistive devices, instrumentation or data collection methodologies. In light of this variability, unidimensional, cycle-based gait variables such as stride period should be viewed as random variables and prototypical single-cycle kinematic or kinetic curves ought to be considered as random functions of time. Within this framework, we exemplify some practical solutions to a number of commonly encountered analytical challenges in dealing with gait variability. On the topic of univariate gait variables, robust estimation is proposed as a means of coping with contaminated gait data, and the summary of non-normally distributed gait data is demonstrated by way of empirical examples. On the summary of gait curves, we discuss methods to manage undesirable phase variation and non-robust spread estimates. To overcome the limitations of conventional comparisons among curve landmarks or parameters, we propose as a viable alternative, the combination of curve registration, robust estimation, and formal statistical testing of curves as coherent units. On the basis of these discussions, we provide heuristic guidelines for the summary of gait variables and the comparison of gait curves
Automatic single-trial discrimination of mental arithmetic, mental singing and the no-control state from prefrontal activity: toward a three-state NIRS-BCI
<p>Abstract</p> <p>Background</p> <p>Near-infrared spectroscopy (NIRS) is an optical imaging technology that has recently been investigated for use in a safe, non-invasive brain-computer interface (BCI) for individuals with severe motor impairments. To date, most NIRS-BCI studies have attempted to discriminate two mental states (e.g., a mental task and rest), which could potentially lead to a two-choice BCI system. In this study, we attempted to automatically differentiate three mental states - specifically, intentional activity due to 1) a mental arithmetic (MA) task and 2) a mental singing (MS) task, and 3) an unconstrained, "no-control (NC)" state - to investigate the feasibility of a three-choice system-paced NIRS-BCI.</p> <p>Results</p> <p>Deploying a dual-wavelength frequency domain near-infrared spectrometer, we interrogated nine sites around the frontopolar locations while 7 able-bodied adults performed mental arithmetic and mental singing to answer multiple-choice questions within a system-paced paradigm. With a linear classifier trained on a ten-dimensional feature set, an overall classification accuracy of 56.2% was achieved for the MA vs. MS vs. NC classification problem and all individual participant accuracies significantly exceeded chance (i.e., 33%). However, as anticipated based on results of previous work, the three-class discrimination was unsuccessful for three participants due to the ineffectiveness of the mental singing task. Excluding these three participants increases the accuracy rate to 62.5%. Even without training, three of the remaining four participants achieved accuracies approaching 70%, the value often cited as being necessary for effective BCI communication.</p> <p>Conclusions</p> <p>These results are encouraging and demonstrate the potential of a three-state system-paced NIRS-BCI with two intentional control states corresponding to mental arithmetic and mental singing.</p
- …