5,028 research outputs found
Analysis of Two-Body Decays of Charmed Baryons Using the Quark-Diagram Scheme
We give a general formulation of the quark-diagram scheme for the nonleptonic
weak decays of baryons. We apply it to all the decays of the antitriplet and
sextet charmed baryons and express their decay amplitudes in terms of the
quark-diagram amplitudes. We have also given parametrizations for the effects
of final-state interactions. For SU(3) violation effects, we only parametrize
those in the horizontal -loop quark diagrams whose contributions are solely
due to SU(3)-violation effects. In the absence of all these effects, there are
many relations among various decay modes. Some of the relations are valid even
in the presence of final-state interactions when each decay amplitude in the
relation contains only a single phase shift. All these relations provide useful
frameworks to compare with future experiments and to find out the effects of
final-state interactions and SU(3) symmetry violations.Comment: 28 pages, 20 Tables in landscape form, 4 figures. Main changes are:
(i) some errors in the Tables and in the relations between the quark-diagram
amplitudes of this paper and those of Ref.[10] are corrected, (ii)
improvements are made in the presentation so that comparisons with previous
works and what have been done to include SU(3) breaking and final-state
interactions are more clearly stated; to appear in the Physical Review
Relation Between Quantum Speed Limits And Metrics On U(n)
Recently, Chau [Quant. Inform. & Comp. 11, 721 (2011)] found a family of
metrics and pseudo-metrics on -dimensional unitary operators that can be
interpreted as the minimum resources (given by certain tight quantum speed
limit bounds) needed to transform one unitary operator to another. This result
is closely related to the weighted -norm on . Here we
generalize this finding by showing that every weighted -norm on
with 1\le p \le \limitingp induces a metric and a
pseudo-metric on -dimensional unitary operators with quantum
information-theoretic meanings related to certain tight quantum speed limit
bounds. Besides, we investigate how far the correspondence between the
existence of metrics and pseudo-metrics of this type and the quantum speed
limits can go.Comment: minor amendments, 6 pages, to appear in J.Phys.
Factorial Moments in a Generalized Lattice Gas Model
We construct a simple multicomponent lattice gas model in one dimension in
which each site can either be empty or occupied by at most one particle of any
one of species. Particles interact with a nearest neighbor interaction
which depends on the species involved. This model is capable of reproducing the
relations between factorial moments observed in high--energy scattering
experiments for moderate values of . The factorial moments of the negative
binomial distribution can be obtained exactly in the limit as becomes
large, and two suitable prescriptions involving randomly drawn nearest neighbor
interactions are given. These results indicate the need for considerable care
in any attempt to extract information regarding possible critical phenomena
from empirical factorial moments.Comment: 15 pages + 1 figure (appended as postscript file), REVTEX 3.0,
NORDITA preprint 93/4
Flavor SU(3) symmetry and QCD factorization in and decays
Using flavor SU(3) symmetry, we perform a model-independent analysis of
charmless decays. All the relevant
topological diagrams, including the presumably subleading diagrams, such as the
QCD- and EW-penguin exchange diagrams and flavor-singlet weak annihilation
ones, are introduced. Indeed, the QCD-penguin exchange diagram turns out to be
important in understanding the data for penguin-dominated decay modes. In this
work we make efforts to bridge the (model-independent but less quantitative)
topological diagram or flavor SU(3) approach and the (quantitative but somewhat
model-dependent) QCD factorization (QCDF) approach in these decays, by
explicitly showing how to translate each flavor SU(3) amplitude into the
corresponding terms in the QCDF framework. After estimating each flavor SU(3)
amplitude numerically using QCDF, we discuss various physical consequences,
including SU(3) breaking effects and some useful SU(3) relations among decay
amplitudes of and .Comment: 47 pages, 3 figures, 28 table
Dynamics of a suspended nanowire driven by an ac Josephson current in an inhomogeneous magnetic field
We consider a voltage-biased nanoelectromechanical Josephson junction, where
a suspended nanowire forms a superconducting weak-link, in an inhomogeneous
magnetic field. We show that a nonlinear coupling between the Josephson current
and the magnetic field generates a Laplace force that induces a whirling motion
of the nanowire. By performing an analytical and a numerical analysis, we
demonstrate that at resonance, the amplitude-phase dynamics of the whirling
movement present different regimes depending on the degree of inhomogeneity of
the magnetic field: time independent, periodic and chaotic. Transitions between
these regimes are also discussed.Comment: 7 pages, 5 figure
Nonleptonic Two-Body Decays of D Mesons in Broken SU(3)
Decays of the D mesons to two pseudoscalars, to two vectors, and to
pseudoscalar plus vector are discussed in the context of broken flavor SU(3). A
few assumptions are used to reduce the number of parameters. Amplitudes are fit
to the available data, and predictions of branching ratios for unmeasured modes
are made.Comment: LaTeX, 24 page
Cabibbo-allowed nonleptonic weak decays of charmed baryons
Cabibbo-allowed nonleptonic weak decays of charmed baryons
\lamc,~\xin,~\xip and into an octet baryon and a pseudoscalar
meson are analyzed. The nonfactorizable contributions are evaluated under pole
approximation, and it turns out that the -wave amplitudes are dominated by
the low-lying \halfm resonances, while -wave ones governed by the
ground-state \halfp poles. The MIT bag model is employed to calculate the
coupling constants, form factors and baryon matrix elements. Our conclusions
are: (i) waves are no longer dominated by commutator terms; the
current-algebra method is certainly not applicable to parity-violating
amplitudes, (ii) nonfactorizable exchange effects are generally important;
they can be comparable to and somtimes even dominate over factorizable
contributions, depending on the decay modes under consideration, (iii)
large- approximation for factorizable amplitudes also works in the heavy
baryon sector and it accounts for the color nonsuppression of \lamc\ri
p\bar{K}^0 relative to \lamc\ri\Lambda\pi^+, (iv) a measurement of the decay
rate and the sign of the asymmetry parameter of certain proposed decay
modes will help discern various models; especially the sign of in
\lamc\ri\Sigma\pi decays can be used to unambiguously differentiate recent
theoretical schemes from current algebra, and (v) waves are the dominant
contributions to the decays \lamc\ri\Xi^0 K^+ and \xin\ri\Sigma^+ K^-, but
they are subject to a large cancellation; this renders present theoretical
predictions on these two channels unreliable.Comment: PHYZZX, 31 pages, 3 tables, IP-ASTP-10-93, ITP-SB-93-2
Implications of Recent Measurements
The recent measurements of the color-suppressed modes imply non-vanishing relative final-state interaction (FSI)
phases among various decay amplitudes. Depending on whether or
not FSIs are implemented in the topological quark-diagram amplitudes, two
solutions for the parameters and are extracted from data using
various form-factor models. It is found that is not universal:
and with a relative phase
of order between and . If FSIs are not included in
quark-diagram amplitudes from the outset, and
will become smaller. The large value of compared to
or naive expectation implies the importance of
long-distance FSI contributions to color-suppressed internal -emission via
final-state rescatterings of the color-allowed tree amplitude.Comment: 17 pages. The Introduction is substantially revised and the order of
the presentation in Sec. 2 is rearranged. To appear in Phys. Re
Final-State Phases in Charmed Meson Two-Body Nonleptonic Decays
Observed decay rates indicate large phase differences among the amplitudes
for the charge states in and but
relatively real amplitudes in the charge states for . This
feature is traced using an SU(3) flavor analysis to a sign flip in the
contribution of one of the amplitudes contributing to the latter processes in
comparison with its contribution to the other two sets. This amplitude may be
regarded as an effect of rescattering and is found to be of magnitude
comparable to others contributing to charmed particle two-body nonleptonic
decays.Comment: 19 pages, latex, 4 figures, to be submitted to Phys. Rev.
A Continuum Model for Soil-Pile-Structure Interactions Under Earthquake Excitation
An exact analytical method for the interaction analysis of a fully coupled soil-pile-structure system under seismic excitation is investigated in this paper. Only horizontal shaking induced by harmonic SH waves was considered. The soil mass, pile and building were all considered as elastic with hysteretic type damping. Geometrically, the soil is modeled as an elastic isotropic homogeneous continuum, and both pile and structures are simplified as beam models. The structure and piles are coupled through a rigid foundation at the ground level. Buildings of various heights in Hong Kong designed to withstand wind load were analyzed using the present model. Only the shaking at the ground level is considered in this study. It was discovered that the maximum shaking of the piled-structures at ground level is generally larger than that of a free field ground shaking except near the first natural frequency of the coupled soil-pile-structure system. This first resonant frequency depends strongly on the natural frequency of the structure
- …