409 research outputs found

    Tumor Encasement of the Right Coronary Artery: Role of Anatomic and Functional Imaging in Diagnosis and Therapeutic Management

    Get PDF
    We presented two rare cases of mediastinal tumor encasing the right coronary artery (RCA), one with recurrent metastatic thymoma and another with primary poorly differentiated neoplasm. Different degrees and locations of RCA involvement were noted. The treatment approach varied from conservative to surgical. Coronary artery involvement by mediastinal tumors is important to be investigated with imaging as it may guide the surgical planning

    Superior Vena Cava Syndrome Associated with Right-to-Left Shunt through Systemic-to-Pulmonary Venous Collaterals

    Get PDF
    Superior vena cava (SVC) obstruction is associated with the gradual development of venous collaterals. We present a rare form of systemic-to-pulmonary subpleural collateral pathway that developed in the bridging subpleural pulmonary veins in a 54-year-old woman with complete SVC obstruction. This uncommon collateral pathway represents a rare form of acquired right-to-left shunt due to previous pleural adhesions with an increased risk of stroke due to right-to-left venous shunting, which requires lifelong anticoagulation

    Acute Myocardial Infarction Manifested with Headache

    Get PDF
    We report a very rare case of a patient who presented with headache as the sole symptom of an acute myocardial infarction (AMI). The patient underwent primary percutaneous coronary angioplasty followed by drug-eluting stent implantation and the headache was immediately relieved. The pathophysiologic explanation of the occurrence of headache as a sole manifestation of an AMI is discussed

    Regulation of heparanase expression in coronary artery disease in diabetic, hyperlipidemic swine

    Get PDF
    Objective Enzymatic degradation of the extracellular matrix is known to be powerful regulator of atherosclerosis. However, little is known about the enzymatic regulation of heparan sulfate proteoglycans (HSPGs) during the formation and progression of atherosclerotic plaques. Methods and results Swine were rendered diabetic through streptozotocin injection and hyperlipidemic through a high fat diet. Arterial remodeling and local endothelial shear stress (ESS) were assessed using intravascular ultrasound, coronary angiography and computational fluid dynamics at weeks 23 and 30. Coronary arteries were harvested and 142 arterial subsegments were analyzed using histomorphologic staining, immunostaining and real time PCR. Heparanase staining and activity was increased in arterial segments with low ESS, in lesions with thin cap fibroatheroma (TCFA) morphology and in lesions with severely degraded internal elastic laminae. In addition, heparanase staining co-localized with staining for CD45 and MMP-2 within atherosclerotic plaques. Dual staining with gelatinase zymography and heparanase immunohistochemical staining demonstrated co-localization of matrix metalloprotease activity with heparanase staining. A heparanase enzymatic activity assay demonstrated increased activity in TCFA lesions, subsegments with low ESS and in macrophages treated with oxidized LDL or angiotensin II. Conclusions Taken together, our results support a critical role for heparanase in the development of vulnerable plaques and suggest a novel therapeutic target for the treatment of atherosclerosis.Novartis (Firm)Boston Scientific CorporationNational Institutes of Health (U.S.) (Grant R01 GM49039

    Clinical validation of an algorithm for rapid and accurate automated segmentation of intracoronary optical coherence tomography images

    Get PDF
    Objectives: The analysis of intracoronary optical coherence tomography (OCT) images is based on manual identification of the lumen contours and relevant structures. However, manual image segmentation is a cumbersome and time-consuming process, subject to significant intra- and inter-observer variability. This study aims to present and validate a fully-automated method for segmentation of intracoronary OCT images. Methods: We studied 20 coronary arteries (mean length = 39.7 ± 10.0 mm) from 20 patients who underwent a clinically-indicated cardiac catheterization. The OCT images (n = 1812) were segmented manually, as well as with a fully-automated approach. A semi-automated variation of the fully-automated algorithm was also applied. Using certain lumen size and lumen shape characteristics, the fully- and semi-automated segmentation algorithms were validated over manual segmentation, which was considered as the gold standard. Results: Linear regression and Bland–Altman analysis demonstrated that both the fully-automated and semiautomated segmentation had a very high agreement with the manual segmentation, with the semi-automated approach being slightly more accurate than the fully-automated method. The fully-automated and semiautomated OCT segmentation reduced the analysis time by more than 97% and 86%, respectively, compared to manual segmentation. Conclusions: In the current work we validated a fully-automated OCT segmentation algorithm, as well as a semiautomated variation of it in an extensive “real-life” dataset of OCT images. The study showed that our algorithm can perform rapid and reliable segmentation of OCT images

    Thin-Capped Atheromata With Reduced Collagen Content in Pigs Develop in Coronary Arterial Regions Exposed to Persistently Low Endothelial Shear Stress

    Get PDF
    Objective—The mechanisms promoting the focal formation of rupture-prone coronary plaques in vivo remain incompletely understood. This study tested the hypothesis that coronary regions exposed to low endothelial shear stress (ESS) favor subsequent development of collagen-poor, thin-capped plaques. Approach and Results—Coronary angiography and 3-vessel intravascular ultrasound were serially performed at 5 consecutive time points in vivo in 5 diabetic, hypercholesterolemic pigs. ESS was calculated along the course of each artery with computational fluid dynamics at all 5 time points. At follow-up, 184 arterial segments with previously identified in vivo ESS underwent histopathologic analysis. Compared with other plaque types, eccentric thin-capped atheromata developed more in segments that experienced lower ESS during their evolution. Compared with lesions with higher preceding ESS, segments persistently exposed to low ESS (<1.2 Pa) exhibited reduced intimal smooth muscle cell content; marked intimal smooth muscle cell phenotypic modulation; attenuated procollagen-I gene expression; increased gene and protein expression of the interstitial collagenases matrix-metalloproteinase-1, -8, -13, and -14; increased collagenolytic activity; reduced collagen content; and marked thinning of the fibrous cap. Conclusions—Eccentric thin-capped atheromata, lesions particularly prone to rupture, form more frequently in coronary regions exposed to low ESS throughout their evolution. By promoting an imbalance of attenuated synthesis and augmented collagen breakdown, low ESS favors the focal evolution of early lesions toward plaques with reduced collagen content and thin fibrous caps—2 critical determinants of coronary plaque vulnerability.Novartis (Firm)Boston Scientific CorporationBehrakis Foundation (Research Fellowship)Hellenic Heart FoundationHellenic Atherosclerosis SocietyNational Institutes of Health (U.S.) (Grant RO1 GM49039

    Arterial Remodeling and Endothelial Shear Stress Exhibit Significant Longitudinal Heterogeneity Along the Length of Coronary Plaques

    Get PDF
    Atherosclerosis is determined by both systemic risk factors and local vascular mechanisms. The arterial remodeling in response to plaque development plays a key role in atherosclerosis. Compensatory expansive remodeling is an adaptive mechanism that maintains lumen patency as a plaque develops. In contrast, excessive expansive remodeling, signifying an enlargement in vascular and lumen volume as a result of local plaque buildup, is a consistent attribute of high-risk plaques. Local hemodynamic factors, in particular low endothelial shear stress (ESS), is an intensely proinflammatory and proatherogenic stimulus and largely accounts for the spatially diverse distribution of atherosclerotic plaques. However, plaque, remodeling and ESS have hitherto been investigated only in the cross-sectional arterial axis and their distribution in the longitudinal axis of individual plaques has not been characterized

    Living with an inferior sinus venosus defect

    Get PDF

    Natural History of Experimental Coronary Atherosclerosis and Vascular Remodeling in Relation to Endothelial Shear Stress

    Get PDF
    Author Manuscript: 2011 May 18.Background— The natural history of heterogeneous atherosclerotic plaques and the role of local hemodynamic factors throughout their development are unknown. We performed a serial study to assess the role of endothelial shear stress (ESS) and vascular remodeling in the natural history of coronary atherosclerosis. Methods and Results— Intravascular ultrasound-based 3-dimensional reconstruction of all major coronary arteries (n=15) was performed serially in vivo in 5 swine 4, 11, 16, 23, and 36 weeks after induction of diabetes mellitus and hyperlipidemia. The reconstructed arteries were divided into 3-mm-long segments (n=304). ESS was calculated in all segments at all time points through the use of computational fluid dynamics. Vascular remodeling was assessed at each time point in all segments containing significant plaque, defined as maximal intima-media thickness ≥0.5 mm, at week 36 (n=220). Plaque started to develop at week 11 and progressively advanced toward heterogeneous, multifocal lesions at all subsequent time points. Low ESS promoted the initiation and subsequent progression of plaques. The local remodeling response changed substantially over time and determined future plaque evolution. Excessive expansive remodeling developed in regions of very low ESS, further exacerbated the low ESS, and was associated with the most marked plaque progression. The combined assessment of ESS, remodeling, and plaque severity enabled the early identification of plaques that evolved to high-risk lesions at week 36. Conclusions— The synergistic effect of local ESS and the remodeling response to plaque formation determine the natural history of individual lesions. Combined in vivo assessment of ESS and remodeling may predict the focal formation of high-risk coronary plaque
    corecore