86 research outputs found

    The implications of demand response measures and electrification of transport on UK household energy demand and consumption

    Get PDF
    This study has been undertaken to gain a better understanding on how the residential electricity demand and consumption values might evolve in the medium term in a future built environment benefiting from renewable energy systems and storage technologies. Analysis and modeling of winter and summer electricity demand and consumption data in four scenarios for 2030 was performed, after the establishment of a baseline scenario in 2015 (BS 2015). The scenarios in 2030 included the business as usual scenario (BAU 2030), a scenario assuming electrification of heating and energy efficiency measures (EE 2030), a scenario in which demand response measures are also considered (DR 2030) and a scenario in which one electric vehicle (EV) is assumed for each house as well (Te 2030). Electricity demand and consumption ranges for different scales at the distribution level for each scenario were derived. It was concluded that properties with currently low peak demand values are bound to experience a much higher peak in the early morning hours in winter under the Te 2030 scenario than properties with already high peak demand. This would signify a new peak at a new time. In terms of electricity consumption in 2030, the energy efficiency measures would counterbalance the increase of electricity consumption due to the inclusion of the EV in winter, so the consumption in Te 2030 is found to be similar to the consumption in BAU 2030. The analysis also demonstrated the need to explore the potential role of thermal storage versus electricity storage in buildings

    How can batteries 'fuel' the built environment?

    Get PDF

    The choice and architectural implications of battery storage technologies in residential buildings

    Get PDF
    This thesis investigated the implications of the integration of battery storage technologies on the architectural design of buildings, providing design considerations for architects and built environment practitioners. The study focused on the UK residential sector, considering ‘high energy’ battery applications in grid-connected systems, which provide the possibility of ‘island’ mode operation for a period of several hours up to several days. The implications were assessed in different scenarios in 2030, addressing business as usual, the implementation of energy efficiency and demand response measures, electric heating and electrification of transport. The research was split into three phases and was conducted through quantitative and qualitative methods. Phase 1 included the analysis of the energy storage side, which led to a classification of battery storage technologies and their characteristics into a database. The analysis in this phase was conducted through a systematic literature review, contact with battery manufacturers and other stakeholders, exploration of case studies, as well as interviews to battery stakeholders. Phase 2 included the modelling of the energy demand side, which explored the evolution of the peak demand and electricity consumption in various residential building scales in 2030. Phase 3 used the outputs from Phase 1 and Phase 2 to assess the applicability of nine battery technologies in different building scales, their spatial requirements, such as footprint, volume, mass, ventilation, location and their cost. The findings suggest that the implications for building design are of great importance regarding the applicability of battery technologies in different building scales and of minor importance as regards the footprint, volume and mass requirements. The study reveals the most suitable technologies for each residential scale and scenario in 2030 regarding their spatial requirements and cost
    • …
    corecore