24 research outputs found

    THE SAMOTHRACE EARTHQUAKE OF MAY 2014 AND THE DISPLACEMENTS ESTIMATIONS USING PERMANENT GPS STATIONS DATA

    Get PDF
    Η συμβολή των δικτύων GPS στην παρακολούθηση σεισμικών φαινομένων είναι σημαντική καθώς παρέχει άμεση γεωμετρική πληροφορία στο γήινο φλοιό χρησιμοποιώντας δορυφορικές παρατηρήσεις. Στη παρούσα μελέτη εξετάζονται οι μετακινήσεις στη θέση των μόνιμων σταθμών GPS, που προέρχονται από έντονα σεισμικά φαινόμενα στη περιοχή του Β. Αιγαίου μετά τον έντονο σεισμό στις 24 Μαΐου του 2014. Οι μετακινήσεις στο οριζόντιο επίπεδο μετά το σεισμό για το νησί της Σαμοθράκης εκτιμήθηκαν σε 9.4 cm και για το νησί της Λήμνου σε 5.2 cm αντιστοίχως. Διάστημα μελέτης επτά ημερών ήταν ικανό για να φανεί ότι η παραμόρφωση εξελίχθηκε σταδιακά σε διάστημα δύο ημερών.The contribution of GPS networks in monitoring seismic events is important because they can provide a direct geometrical information on the Earth's crust using satellite observations In this study position displacements of permanent GPS stations are determined due to intense seismic events in the North Aegean area after the strong earthquake on May 24, 2014. The horizontal coseismic displacements for the Samothrace Island were estimated at 9.4 cm and for Lemnos Island at 5.2 cm respectively. A study period of seven days was enough to show that the deformation evolved into two days

    PALAEOSEISMOLOGICAL INVESTIGATION OF THE GYRTONI FAULT (THESSALY, CENTRAL GREECE)

    Get PDF
    Two paleoseismological trenches were excavated across the Gyrtoni Fault in NE Thessaly and studied in order to understand the recent seismotectonic behavior of this structure. Twenty five fluvial-colluvial sediment and pottery samples from both the upthrown and the downthrown fault blocks were investigated. Optically Stimulated Luminescence (OSL) dating has been applied to date both sedimentary depositspalaeosoils and pottery fragments. Paleoseismological analysis of the two trenches indicates evidence of three surface faulting events in the time span between 1.42 ±0.06 ka and 5.59 ± 0.13 ka. The observed vertical displacement per event of ~0.50 m corresponds to an Mw 6.5 ± 0.1 earthquake. An average fault slip rate of 0.41 ± 0.01 mm/yr and an average recurrence of 1.39 ± 0.14 ka for earthquakes were estimated. The results documented the activity of the fault and since the return period from the most recent event (minimum age 1.42 ± 0.06 ka) has expired, the possibility for reactivation of this active structure in the near future should be included in Seismic Hazard Assessment

    Seismic hazard for the Trans Adriatic Pipeline (TAP). Part 2: broadband scenarios at the Fier Compressor Station (Albania)

    Get PDF
    AbstractTo ensure environmental and public safety, critical facilities require rigorous seismic hazard analysis to define seismic input for their design. We consider the case of the Trans Adriatic Pipeline (TAP), which is a pipeline that transports natural gas from the Caspian Sea to southern Italy, crossing active faults and areas characterized by high seismicity levels. For this pipeline, we develop a Probabilistic Seismic Hazard Assessment (PSHA) for the broader area, and, for the selected critical sites, we perform deterministic seismic hazard assessment (DSHA), by calculating shaking scenarios that account for the physics of the source, propagation, and site effects. This paper presents a DSHA for a compressor station located at Fier, along the Albanian coastal region. Considering the location of the most hazardous faults in the study site, revealed by the PSHA disaggregation, we model the ground motion for two different scenarios to simulate the worst-case scenario for this compressor station. We compute broadband waveforms for receivers on soft soils by applying specific transfer functions estimated from the available geotechnical data for the Fier area. The simulations reproduce the variability observed in the ground motion recorded in the near-earthquake source. The vertical ground motion is strong for receivers placed above the rupture areas and should not be ignored in seismic designs; furthermore, our vertical simulations reproduce the displacement and the static offset of the ground motion highlighted in recent studies. This observation confirms the importance of the DSHA analysis in defining the expected pipeline damage functions and permanent soil deformations

    Application of nano-hydroxyapatite/chitosan scaffolds on rat calvarial critical-sized defects: A pilot study

    Full text link
    Background: The purpose of this pilot study was to evaluate for the first time the effect of 75/25 w/w nano-Hydroxyapatite/Chitosan (nHAp/CS) scaffolds on Guided Bone Regeneration (GBR) in rat calvarial critical-sized defects (CSDs). Material and Methods: Six adult Sprague Dawley rats, 3 males and 3 females, were used. Two CSDs, full thickness and 5mm in diameter, were trephined in both sides of the parietal bone. The right CSD was filled with nHAp/ CS scaffold, while the left CSD remained empty, as the control group. The wound was sutured in layers. Rats were euthanized with diethyl ether inhalation at 2, 4 and 8 weeks after surgical procedure. Histological and histomorphometric analysis was performed within distinct regions of interest (ROI): the lateral area inward of the middle sagittal seam; the lateral area outward of the middle sagittal seam and the central area. Results: The mean surface of newly formed bone (in μm 2 ) in the lateral area inward of the middle sagittal seam of all rats was significantly higher (P=0.039) in the experimental group (91733.00±38855.60) than the control group (46762.17±25507.97). The NOex-c, defined as total number of osteocytes (OST) in newly formed bone surface in experimental group [experimental OST] minus the total number of osteocytes in newly formed bone surface in control group [control OST], was significantly greater (P=0.029) at 4 th week post-surgery. Within the experimental group, a statistically significant increase (P=0.042) in the surface of newly formed bone was noticed in rats euthanized in 4 th week compared with rats euthanized in 2 nd week after surgery in the lateral area inward of the middle sagittal seam. Conclusions: The results of this study suggest that 75/25 w/w nHAp/CS scaffolds should be considered as a suitable biomaterial for GBR. © Medicina Oral S. L. C.I.F

    Imaging of nano-hydroxyapatite/chitosan scaffolds using a cone beam computed tomography device on rat calvarial defects with histological verification

    Full text link
    Objectives: Τhis study aims at determining the ability of cone beam computed tomography (CBCT) to visualize critical-size defects (CSD) created at rat calvaria and filled with 75/25 w/w nano-hydroxyapatite/chitosan (nHAp/CS) scaffolds, prior to their histological investigation. Materials and methods: Thirty adult Sprague Dawley rats, 15 males and 15 females, were used. Two CSD, 5 mm in diameter, were bilaterally trephined in the parietal bone. The right CSD was filled with nHAp/CS scaffold, while the left CSD remained empty, as the control group. Two female rats died post-operatively. Rats were euthanized at 2, 4, and 8 weeks post-surgery. Twenty-eight specimens (15 × 2 × 10 mm) were resected—containing both CSDs—and then scanned using a NewTom VGi CBCT imaging unit (Verona, Italy). The manufacturer’s software trace region profile tool (NNT v6.2, Verona, Italy) was used in selected axial slices. The greyscale value (in VGiHU) and the traced/selected region of interest (ROI, in mm2) of those areas were automatically calculated. Subsequently, all specimens were histologically examined. Results: An increased VGiHU (P = 0.000), was observed in the experimental group relative to the control group. The ROI of CSD (in mm2) was significantly reduced (P = 0.001) from the fourth to the eighth week in both groups. No statistically significant difference between male and female rats (P = 0.188) was observed with respect to VGiHU. Conclusions: The nHAp/CS scaffolds are easily visualized using a particular high-resolution CBCT device. Clinical relevance: Both the CBCT measurements and also the histological results suggest that the nHAp/CS scaffold presence contributes to new bone formation in rat calvarial CSD. © 2019, Springer-Verlag GmbH Germany, part of Springer Nature

    Palaeoseismological investigation of the Gyrtoni Fault (Thessaly, Central Greece).

    Get PDF
    Two paleoseismological trenches were excavated across the Gyrtoni Fault in NE Thessaly and studied in order to understand the recent seismotectonic behavior of this structure. Twenty five fluvial-colluvial sediment and pottery samples from both the upthrown and the downthrown fault blocks were investigated. Optically Stimulated Luminescence (OSL) dating has been applied to date both sedimentary depositspalaeosoils and pottery fragments. Paleoseismological analysis of the two trenches indicates evidence of three surface faulting events in the time span between 1.42 ± 0.06 ka and 5.59 ± 0.13 ka. The observed vertical displacement per event of ~0.50 m corresponds to an Mw 6.5 ± 0.1 earthquake. An average fault slip rate of 0.41 ± 0.01 mm/yr and an average recurrence of 1.39 ± 0.14 ka for earthquakes were estimated. The results documented the activity of the fault and since the return period from the most recent event (minimum age 1.42 ± 0.06 ka) has expired, the possibility for reactivation of this active structure in the near future should be included in Seismic Hazard Assessment

    PALAEOSEISMOLOGICAL INVESTIGATION OF THE GYRTONI FAULT (THESSALY, CENTRAL GREECE)

    Get PDF
    Two paleoseismological trenches were excavated across the Gyrtoni Fault in NE Thessaly and studied in order to understand the recent seismotectonic behavior of this structure. Twenty five fluvial-colluvial sediment and pottery samples from both the upthrown and the downthrown fault blocks were investigated. Optically Stimulated Luminescence (OSL) dating has been applied to date both sedimentary depositspalaeosoils and pottery fragments. Paleoseismological analysis of the two trenches indicates evidence of three surface faulting events in the time span between 1.42 ±0.06 ka and 5.59 ± 0.13 ka. The observed vertical displacement per event of ~0.50 m corresponds to an Mw 6.5 ± 0.1 earthquake. An average fault slip rate of 0.41 ± 0.01 mm/yr and an average recurrence of 1.39 ± 0.14 ka for earthquakes were estimated. The results documented the activity of the fault and since the return period from the most recent event (minimum age 1.42 ± 0.06 ka) has expired, the possibility for reactivation of this active structure in the near future should be included in Seismic Hazard Assessment

    Seismic hazard for the Trans Adriatic Pipeline (TAP). Part 1: probabilistic seismic hazard analysis along the pipeline

    Full text link
    The design of critical facilities needs a targeted computation of the expected ground motion levels. The Trans Adriatic Pipeline (TAP) is the pipeline that transports natural gas from the Greek-Turkish border, through Greece and Albania, to Italy. We present here the probabilistic seismic hazard analysis (PSHA) that we performed for this facility, and the deaggregation of the results, aiming to identify the dominant seismic sources for a selected site along the Albanian coast, where one of the two main compressor stations is located. PSHA is based on an articulated logic tree of twenty branches, consisting of two models for source, seismicity, estimation of the maximum magnitude, and ground motion. The area with the highest hazard occurs along the Adriatic coast of Albania (PGA between 0.8 and 0.9 g on rock for a return period of 2475 years), while strong ground motions are also expected to the north of Thessaloniki, Kavala, in the southern Alexandroupolis area, as well as at the border between Greece and Turkey. The earthquakes contributing most to the hazard of the test site at high and low frequencies (1 and 5 Hz) and the corresponding design events for the TAP infrastructure have been identified as local quakes with MW 6.6 and 6.0, respectively

    Seismic hazard for the Trans Adriatic Pipeline (TAP). Part 2: broadband scenarios at the Fier Compressor Station (Albania)

    Full text link
    To ensure environmental and public safety, critical facilities require rigorous seismic hazard analysis to define seismic input for their design. We consider the case of the Trans Adriatic Pipeline (TAP), which is a pipeline that transports natural gas from the Caspian Sea to southern Italy, crossing active faults and areas characterized by high seismicity levels. For this pipeline, we develop a Probabilistic Seismic Hazard Assessment (PSHA) for the broader area, and, for the selected critical sites, we perform deterministic seismic hazard assessment (DSHA), by calculating shaking scenarios that account for the physics of the source, propagation, and site effects. This paper presents a DSHA for a compressor station located at Fier, along the Albanian coastal region. Considering the location of the most hazardous faults in the study site, revealed by the PSHA disaggregation, we model the ground motion for two different scenarios to simulate the worst-case scenario for this compressor station. We compute broadband waveforms for receivers on soft soils by applying specific transfer functions estimated from the available geotechnical data for the Fier area. The simulations reproduce the variability observed in the ground motion recorded in the near-earthquake source. The vertical ground motion is strong for receivers placed above the rupture areas and should not be ignored in seismic designs; furthermore, our vertical simulations reproduce the displacement and the static offset of the ground motion highlighted in recent studies. This observation confirms the importance of the DSHA analysis in defining the expected pipeline damage functions and permanent soil deformations
    corecore