4,528 research outputs found
Predictions for the unitarity triangle angles in a new parametrization
A new approach to the parametrization of the CKM matrix, , is considered
in which is written as a linear combination of the unit matrix and a
non-diagonal matrix which causes intergenerational-mixing, that is
. Such a depends on 3 real parameters
including the parameter . It is interesting that a value of
is required to fit the available data on the CKM-matrix
including CP-violation. Predictions of this fit for the angles ,
and for the unitarity triangle corresponding to
, are given. For
=, we obtain , and
. These values are just about in agreement, within errors,
with the present data. It is very interesting that the unitarity triangle is
expected to be approximately a right-angled, isosceles triangle. Our prediction
is in excellent agreement with the value reported by the Belle collaboration at the Lepton-Photon 2001 meeting.Comment: 11 pages, latex, no figure
Wigner distributions for finite dimensional quantum systems: An algebraic approach
We discuss questions pertaining to the definition of `momentum', `momentum
space', `phase space', and `Wigner distributions'; for finite dimensional
quantum systems. For such systems, where traditional concepts of `momenta'
established for continuum situations offer little help, we propose a physically
reasonable and mathematically tangible definition and use it for the purpose of
setting up Wigner distributions in a purely algebraic manner. It is found that
the point of view adopted here is limited to odd dimensional systems only. The
mathematical reasons which force this situation are examined in detail.Comment: Latex, 13 page
Phase-space descriptions of operators and the Wigner distribution in quantum mechanics II. The finite dimensional case
A complete solution to the problem of setting up Wigner distribution for
N-level quantum systems is presented. The scheme makes use of some of the ideas
introduced by Dirac in the course of defining functions of noncommuting
observables and works uniformly for all N. Further, the construction developed
here has the virtue of being essentially input-free in that it merely requires
finding a square root of a certain N^2 x N^2 complex symmetric matrix, a task
which, as is shown, can always be accomplished analytically. As an
illustration, the case of a single qubit is considered in some detail and it is
shown that one recovers the result of Feynman and Wootters for this case
without recourse to any auxiliary constructs.Comment: 14 pages, typos corrected, para and references added in introduction,
submitted to Jour. Phys.
Particle alignments and shape change in Ge and Ge
The structure of the nuclei Ge and Ge is studied
by the shell model on a spherical basis. The calculations with an extended
Hamiltonian in the configuration space
(, , , ) succeed in reproducing
experimental energy levels, moments of inertia and moments in Ge isotopes.
Using the reliable wave functions, this paper investigates particle alignments
and nuclear shapes in Ge and Ge.
It is shown that structural changes in the four sequences of the positive-
and negative-parity yrast states with even and odd are caused by
various types of particle alignments in the orbit.
The nuclear shape is investigated by calculating spectroscopic moments of
the first and second states, and moreover the triaxiality is examined by
the constrained Hatree-Fock method.
The changes of the first band crossing and the nuclear deformation depending
on the neutron number are discussed.Comment: 18 pages, 21 figures; submitted to Phys. Rev.
Teaching Simulations Supported by Artificial Intelligence in the Real World
Video conferencing has enabled synchronous communication in a classroom and created multi-sensory content to stimulate learners. Artificial intelligence involves complex equations that are better taught using a constructive pedagogy where students experiment with alternative ways of solving the same problem. Multiple-choice questions have high reliability and can easily reveal student skill levels in a quick way. The Australian Computer Society accreditation exercise ensures that the content for each subject serves as a flexible template for teaching. The geographical extent of the country requires the presence of multiple subordinate campuses affiliated to a main campus. Following the concept of strands, it was also necessary to show continuity in learning and assessments between the first- and second-year subjects. Student feedback for subjects with artificial intelligence-based simulations showed that several students found it difficult to understand lectures and assignments. Hence, to measure student learning, we introduced a Kahoot quiz during the recess of each lecture that students could join through their mobile phones from different campuses. Software project management is challenging for students with vision or attention-related disorders. We taught them how to use charts to visually observe variables and narrow down possible relationships before performing in-depth analysis. One of the main purposes of education is employability. Hence, greater context to real world industry examples was introduced into lectures
Salmonella enterica biofilm-mediated dispersal by nitric oxide donors in association with cellulose nanocrystal hydrogels
Protected by extracellular polymers, microbes within biofilms are significantly more resistant to disinfectants. Current research has been instrumental in identifying nitric oxide donors and hydrogels as potential disinfectant additives. Nitric oxide (NO) donors are considered a very promising molecule as biofilm dispersal agents and hydrogels have recently attracted a lot of interest due to their biocompatible properties and ability to form stable thin films. When the NO donor MAHMA NONOate was dissolved in phosphate saline buffer, it was able to reduce the biomass of well-established biofilms up to 15% for at least 24 h of contact time. Encapsulation of MAHMA NONOate and molsidomine within a hydrogel composed of cellulose nanocrystals (CNC) has shown a synergistic effect in dispersing well-established biofilms: after 2 h of exposure, moderate but significant dispersion was measured. After 6 h of exposure, the number of cells transitioning from the biofilm to the planktonic state was up to 0.6 log higher when compared with non-treated biofilms. To further explore the transport processes of NO donors within hydrogels, we measured the nitric oxide flux from gels, at 25°C for a composite of 0.1 µM MAHMA NONOate–CNC. Nitric oxide diffuses up to 500 µm from the hydrogel surface, with flux decreasing according to Fick’s law. 60% of NO was released from the hydrogel composite during the first 23 min. These data suggest that the combined treatments with nitric oxide donor and hydrogels may allow for new sustainable cleaning strategies
- …