6 research outputs found

    Patterning Vascular Networks In Vivo for Tissue Engineering Applications

    Get PDF
    The ultimate design of functionally therapeutic engineered tissues and organs will rely on our ability to engineer vasculature that can meet tissue-specific metabolic needs. We recently introduced an approach for patterning the formation of functional spatially organized vascular architectures within engineered tissues in vivo. Here, we now explore the design parameters of this approach and how they impact the vascularization of an engineered tissue construct after implantation. We used micropatterning techniques to organize endothelial cells (ECs) into geometrically defined “cords,” which in turn acted as a template after implantation for the guided formation of patterned capillaries integrated with the host tissue. We demonstrated that the diameter of the cords before implantation impacts the location and density of the resultant capillary network. Inclusion of mural cells to the vascularization response appears primarily to impact the dynamics of vascularization. We established that clinically relevant endothelial sources such as induced pluripotent stem cell-derived ECs and human microvascular endothelial cells can drive vascularization within this system. Finally, we demonstrated the ability to control the juxtaposition of parenchyma with perfused vasculature by implanting cords containing a mixture of both a parenchymal cell type (hepatocytes) and ECs. These findings define important characteristics that will ultimately impact the design of vasculature structures that meet tissue-specific needs.National Institute of Biomedical Imaging and Bioengineering (U.S.) (Award Number EB000262)National Institute of Biomedical Imaging and Bioengineering (U.S.) (Award Number EB08396)National Institutes of Health (U.S.). National Research Service Awards (1F32DK091007)National Institutes of Health (U.S.). National Research Service Awards (5T32AR007132-35

    Geometric control of vascular networks to enhance engineered tissue integration and function

    Get PDF
    Tissue vascularization and integration with host circulation remains a key barrier to the translation of engineered tissues into clinically relevant therapies. Here, we used a microtissue molding approach to demonstrate that constructs containing highly aligned “cords” of endothelial cells triggered the formation of new capillaries along the length of the patterned cords. These vessels became perfused with host blood as early as 3 d post implantation and became progressively more mature through 28 d. Immunohistochemical analysis showed that the neovessels were composed of human and mouse endothelial cells and exhibited a mature phenotype, as indicated by the presence of alpha-smooth muscle actin–positive pericytes. Implantation of cords with a prescribed geometry demonstrated that they provided a template that defined the neovascular architecture in vivo. To explore the utility of this geometric control, we implanted primary rat and human hepatocyte constructs containing randomly organized endothelial networks vs. ordered cords. We found substantially enhanced hepatic survival and function in the constructs containing ordered cords following transplantation in mice. These findings demonstrate the importance of multicellular architecture in tissue integration and function, and our approach provides a unique strategy to engineer vascular architecture.National Institutes of Health (U.S.) (Grant EB08396)National Institutes of Health (U.S.) (Grant EB00262)National Institutes of Health (U.S.) (National Research Service Award 1F32DK091007

    In situ expansion of engineered human liver tissue in a mouse model of chronic liver disease

    No full text
    Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. Control of both tissue architecture and scale is a fundamental translational roadblock in tissue engineering. An experimental framework that enables investigation into how architecture and scaling may be coupled is needed. We fabricated a structurally organized engineered tissue unit that expanded in response to regenerative cues after implantation into mice with liver injury. Specifically, we found that tissues containing patterned human primary hepatocytes, endothelial cells, and stromal cells in a degradable hydrogel expanded more than 50-fold over the course of 11 weeks in mice with injured livers. There was a concomitant increase in graft function as indicated by the production of multiple human liver proteins. Histologically, we observed the emergence of characteristic liver stereotypical microstructures mediated by coordinated growth of hepatocytes in close juxtaposition with a perfused vasculature. We demonstrated the utility of this system for probing the impact of multicellular geometric architecture on tissue expansion in response to liver injury. This approach is a hybrid strategy that harnesses both biology and engineering to more efficiently deploy a limited cell mass after implantation.NIH (Grants R01EB008396, R01DK85713, EB00262, and U24DK059635, P30-CA14051)National Institute of Environmental Health Sciences (Grant P30-ES002109)NIGMS Training (Grant T32GM007753

    Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues

    Get PDF
    In the absence of perfusable vascular networks, three-dimensional (3D) engineered tissues densely populated with cells quickly develop a necrotic core. Yet the lack of a general approach to rapidly construct such networks remains a major challenge for 3D tissue culture. Here, we printed rigid 3D filament networks of carbohydrate glass, and used them as a cytocompatible sacrificial template in engineered tissues containing living cells to generate cylindrical networks that could be lined with endothelial cells and perfused with blood under high-pressure pulsatile flow. Because this simple vascular casting approach allows independent control of network geometry, endothelialization and extravascular tissue, it is compatible with a wide variety of cell types, synthetic and natural extracellular matrices, and crosslinking strategies. We also demonstrated that the perfused vascular channels sustained the metabolic function of primary rat hepatocytes in engineered tissue constructs that otherwise exhibited suppressed function in their core.National Institutes of Health (U.S.) (Grant EB00262)National Institutes of Health (U.S.) (Grant EB08396)National Institutes of Health (U.S.) (Grant GM74048)University of Pennsylvania (Center for Engineering Cells and Regeneration)American Heart Association (Jon Holden DeHaan Foundation)National Institutes of Health (U.S.). Ruth L. Kirschstein National Research Service Award (DK091007
    corecore