6 research outputs found

    FedCompass: Efficient Cross-Silo Federated Learning on Heterogeneous Client Devices using a Computing Power Aware Scheduler

    Full text link
    Cross-silo federated learning offers a promising solution to collaboratively train robust and generalized AI models without compromising the privacy of local datasets, e.g., healthcare, financial, as well as scientific projects that lack a centralized data facility. Nonetheless, because of the disparity of computing resources among different clients (i.e., device heterogeneity), synchronous federated learning algorithms suffer from degraded efficiency when waiting for straggler clients. Similarly, asynchronous federated learning algorithms experience degradation in the convergence rate and final model accuracy on non-identically and independently distributed (non-IID) heterogeneous datasets due to stale local models and client drift. To address these limitations in cross-silo federated learning with heterogeneous clients and data, we propose FedCompass, an innovative semi-asynchronous federated learning algorithm with a computing power aware scheduler on the server side, which adaptively assigns varying amounts of training tasks to different clients using the knowledge of the computing power of individual clients. FedCompass ensures that multiple locally trained models from clients are received almost simultaneously as a group for aggregation, effectively reducing the staleness of local models. At the same time, the overall training process remains asynchronous, eliminating prolonged waiting periods from straggler clients. Using diverse non-IID heterogeneous distributed datasets, we demonstrate that FedCompass achieves faster convergence and higher accuracy than other asynchronous algorithms while remaining more efficient than synchronous algorithms when performing federated learning on heterogeneous clients

    FAIR principles for AI models, with a practical application for accelerated high energy diffraction microscopy

    Full text link
    A concise and measurable set of FAIR (Findable, Accessible, Interoperable and Reusable) principles for scientific data is transforming the state-of-practice for data management and stewardship, supporting and enabling discovery and innovation. Learning from this initiative, and acknowledging the impact of artificial intelligence (AI) in the practice of science and engineering, we introduce a set of practical, concise, and measurable FAIR principles for AI models. We showcase how to create and share FAIR data and AI models within a unified computational framework combining the following elements: the Advanced Photon Source at Argonne National Laboratory, the Materials Data Facility, the Data and Learning Hub for Science, and funcX, and the Argonne Leadership Computing Facility (ALCF), in particular the ThetaGPU supercomputer and the SambaNova DataScale system at the ALCF AI Testbed. We describe how this domain-agnostic computational framework may be harnessed to enable autonomous AI-driven discovery.Comment: 10 pages, 3 figures. Comments welcome

    APPFLx: Providing Privacy-Preserving Cross-Silo Federated Learning as a Service

    Full text link
    Cross-silo privacy-preserving federated learning (PPFL) is a powerful tool to collaboratively train robust and generalized machine learning (ML) models without sharing sensitive (e.g., healthcare of financial) local data. To ease and accelerate the adoption of PPFL, we introduce APPFLx, a ready-to-use platform that provides privacy-preserving cross-silo federated learning as a service. APPFLx employs Globus authentication to allow users to easily and securely invite trustworthy collaborators for PPFL, implements several synchronous and asynchronous FL algorithms, streamlines the FL experiment launch process, and enables tracking and visualizing the life cycle of FL experiments, allowing domain experts and ML practitioners to easily orchestrate and evaluate cross-silo FL under one platform. APPFLx is available online at https://appflx.lin

    Book of Abstracts of the 2nd International Conference on Applied Mathematics and Computational Sciences (ICAMCS-2022)

    No full text
    It is a great privilege for us to present the abstract book of ICAMCS-2022 to the authors and the delegates of the event. We hope that you will find it useful, valuable, aspiring, and inspiring. This book is a record of abstracts of the keynote talks, invited talks, and papers presented by the participants, which indicates the progress and state of development in research at the time of writing the research article. It is an invaluable asset to all researchers. The book provides a permanent record of this asset. Conference Title: 2nd International Conference on Applied Mathematics and Computational SciencesConference Acronym: ICAMCS-2022Conference Date: 12-14 October 2022Conference Organizers: DIT University, Dehradun, IndiaConference Mode: Online (Virtual

    Ionic Liquids for the Synthesis of Five-Membered N,N-, N,N,N- and N,N,N,NHeterocycles

    No full text
    corecore