9 research outputs found
High-Order Adiabatic Approximation for Non-Hermitian Quantum System and Complexization of Berry's Phase
In this paper the evolution of a quantum system drived by a non-Hermitian
Hamiltonian depending on slowly-changing parameters is studied by building an
universal high-order adiabatic approximation(HOAA) method with Berry's phase
,which is valid for either the Hermitian or the non-Hermitian cases. This
method can be regarded as a non-trivial generalization of the HOAA method for
closed quantum system presented by this author before. In a general situation,
the probabilities of adiabatic decay and non-adiabatic transitions are
explicitly obtained for the evolution of the non-Hermitian quantum system. It
is also shown that the non-Hermitian analog of the Berry's phase factor for the
non-Hermitian case just enjoys the holonomy structure of the dual linear bundle
over the parameter manifold. The non-Hermitian evolution of the generalized
forced harmonic oscillator is discussed as an illustrative examples.Comment: ITP.SB-93-22,17 page
Bearing signal separation enhancement with application to helicopter transmission system
The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Bearing vibration signal separation is essential for fault detection of gearboxes, especially where the vibration is nonstationary, susceptible to background noise, and subjected to an arduous transmission path from the source to the receiver. This paper presents a methodology for improving fault detection via a series of vibration signal processing techniques, including signal separation, synchronous averaging (SA), spectral kurtosis (SK), and envelope analysis. These techniques have been tested on experimentally obtained vibration data acquired from the transmission system of a CS-29 Category A helicopter gearbox operating under different bearing damage conditions. Results showed successful enhancement of bearing fault detection on the second planetary stage of the gearbo
Planetary bearing defect detection in a commercial helicopter main gearbox with vibration and acoustic emission
The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Helicopter gearboxes significantly differ from other transmission types and exhibit unique behaviors that reduce the effectiveness of traditional fault diagnostics methods. In addition, due to lack of redundancy, helicopter transmission failure can lead to catastrophic accidents. Bearing faults in helicopter gearboxes are difficult to discriminate due to the low signal to noise ratio (SNR) in the presence of gear vibration. In addition, the vibration response from the planet gear bearings must be transmitted via a time-varying path through the ring gear to externally mounted accelerometers, which cause yet further bearing vibration signal suppression. This research programme has resulted in the successful proof of concept of a broadband wireless transmission sensor that incorporates power scavenging whilst operating within a helicopter gearbox. In addition, this paper investigates the application of signal separation techniques in detection of bearing faults within the epicyclic module of a large helicopter (CS-29) main gearbox using vibration and Acoustic Emissions (AE). It compares their effectiveness for various operating conditions. Three signal processing techniques including an adaptive filter, spectral kurtosis and envelope analysis, were combined for this investigation. In addition, this research discusses the feasibility of using AE for helicopter gearbox monitoring
Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution.
The early detection of relapse following primary surgery for non-small-cell lung cancer and the characterization of emerging subclones, which seed metastatic sites, might offer new therapeutic approaches for limiting tumour recurrence. The ability to track the evolutionary dynamics of early-stage lung cancer non-invasively in circulating tumour DNA (ctDNA) has not yet been demonstrated. Here we use a tumour-specific phylogenetic approach to profile the ctDNA of the first 100 TRACERx (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy (Rx)) study participants, including one patient who was also recruited to the PEACE (Posthumous Evaluation of Advanced Cancer Environment) post-mortem study. We identify independent predictors of ctDNA release and analyse the tumour-volume detection limit. Through blinded profiling of postoperative plasma, we observe evidence of adjuvant chemotherapy resistance and identify patients who are very likely to experience recurrence of their lung cancer. Finally, we show that phylogenetic ctDNA profiling tracks the subclonal nature of lung cancer relapse and metastasis, providing a new approach for ctDNA-driven therapeutic studies