11 research outputs found

    Nonlinear model reduction via discrete empirical interpolation

    Get PDF
    This thesis proposes a model reduction technique for nonlinear dynamical systems based upon combining Proper Orthogonal Decomposition (POD) and a new method, called the Discrete Empirical Interpolation Method (DEIM). The popular method of Galerkin projection with POD basis reduces dimension in the sense that far fewer variables are present, but the complexity of evaluating the nonlinear term generally remains that of the original problem. DEIM, a discrete variant of the approach from [11], is introduced and shown to effectively overcome this complexity issue. State space error estimates for POD-DEIM reduced systems are also derived. These [Special characters omitted.] error estimates reflect the POD approximation property through the decay of certain singular values and explain how the DEIM approximation error involving the nonlinear term comes into play. An application to the simulation of nonlinear miscible flow in a 2-D porous medium shows that the dynamics of a complex full-order system of dimension 15000 can be captured accurately by the POD-DEIM reduced system of dimension 40 with a factor of [Special characters omitted.] (1000) reduction in computational time

    Stabilized model reduction for nonlinear dynamical systems through a contractivity-preserving framework

    No full text
    This work develops a technique for constructing a reduced-order system that not only has low computational complexity, but also maintains the stability of the original nonlinear dynamical system. The proposed framework is designed to preserve the contractivity of the vector field in the original system, which can further guarantee stability preservation, as well as provide an error bound for the approximated equilibrium solution of the resulting reduced system. This technique employs a low-dimensional basis from proper orthogonal decomposition to optimally capture the dominant dynamics of the original system, and modifies the discrete empirical interpolation method by enforcing certain structure for the nonlinear approximation. The efficiency and accuracy of the proposed method are illustrated through numerical tests on a nonlinear reaction diffusion problem

    Dimension reduction for unsteady nonlinear partial differential equations via empirical interpolation methods

    No full text
    This thesis evaluates and compares the efficiencies of techniques for constructing reduced-order models for finite difference (FD) and finite element (FE) discretized systems of unsteady nonlinear partial differential equations (PDEs). With nonlinearity, the complexity for solving the reduced-order system constructed directly from the well-known Proper Orthogonal Decomposition (POD) technique alone still depends on the dimension of the original system. Empirical Interpolation Method (EIM), proposed in [2], and its discrete variation, Discrete Empirical Interpolation Method (DEIM), introduced in this thesis, are therefore combined with the POD technique to remove this inefficiency in the nonlinear terms of FE and FD cases, respectively. Numerical examples demonstrate that both POD-EIM and POD-DEIM approaches not only dramatically reduce the dimension of the original system with high accuracy, but also remove the dependence on the dimension of the original system as reflected in the decrease computational time compared to the POD approach

    Parametric Nonlinear Model Reduction Using K-Means Clustering for Miscible Flow Simulation

    No full text
    This work considers the model order reduction approach for parametrized viscous fingering in a horizontal flow through a 2D porous media domain. A technique for constructing an optimal low-dimensional basis for a multidimensional parameter domain is introduced by combining K-means clustering with proper orthogonal decomposition (POD). In particular, we first randomly generate parameter vectors in multidimensional parameter domain of interest. Next, we perform the K-means clustering algorithm on these parameter vectors to find the centroids. POD basis is then generated from the solutions of the parametrized systems corresponding to these parameter centroids. The resulting POD basis is then used with Galerkin projection to construct reduced-order systems for various parameter vectors in the given domain together with applying the discrete empirical interpolation method (DEIM) to further reduce the computational complexity in nonlinear terms of the miscible flow model. The numerical results with varying different parameters are demonstrated to be efficient in decreasing simulation time while maintaining accuracy compared to the full-order model for various parameter values

    A Missing Data Reconstruction Method Using an Accelerated Least-Squares Approximation with Randomized SVD

    No full text
    An accelerated least-squares approach is introduced in this work by incorporating a greedy point selection method with randomized singular value decomposition (rSVD) to reduce the computational complexity of missing data reconstruction. The rSVD is used to speed up the computation of a low-dimensional basis that is required for the least-squares projection by employing randomness to generate a small matrix instead of a large matrix from high-dimensional data. A greedy point selection algorithm, based on the discrete empirical interpolation method, is then used to speed up the reconstruction process in the least-squares approximation. The accuracy and computational time reduction of the proposed method are demonstrated through three numerical experiments. The first two experiments consider standard testing images with missing pixels uniformly distributed on them, and the last numerical experiment considers a sequence of many incomplete two-dimensional miscible flow images. The proposed method is shown to accelerate the reconstruction process while maintaining roughly the same order of accuracy when compared to the standard least-squares approach

    Application of POD and DEIM to Dimension Reduction of Nonlinear Miscible Viscous Fingering in Porous Media

    No full text
    A Discrete Empirical Interpolation Method (DEIM) is applied in conjunction with Proper Orthogonal Decomposition (POD) to construct a nonlinear reduced-order model of finite difference discretized system used in the simulation of nonlinear miscible viscous fingering in a 2-D porous medium. POD is first applied to extract a low-dimensional basis that optimally captures the dominant characteristics of the system trajectory. This basis is then used in a Galerkin projection scheme to construct a reduced-order system. DEIM is then applied to greatly improve the efficiency in computing the projected nonlinear terms in the POD reduced system. DEIM achieves a complexity reduction of the nonlinearities which is proportional to the number of reduced variables while POD retains a complexity proportional to the original number of variables. Numerical results demonstrate that the dynamics of the viscous fingering in the full-order system of dimension 15000 can be captured accurately by the POD-DEIM reduced system of dimension 40 with the computational time reduced by factor of O(1000)

    Morphologically Accurate Reduced Order Modeling of Spiking Neurons

    No full text
    Accurately simulating neurons with realistic morphological structure and synaptic inputs requires the solution of large systems of nonlinear ordinary differential equations. We apply model reduction techniques to recover the complete nonlinear voltage dynamics of a neuron using a system of much lower dimension. Using a proper orthogonal decomposition, we build a reduced-order system from salient snapshots of the full system output, thus reducing the number of state variables. A discrete empirical interpolation method is then used to reduce the complexity of the nonlinear term to be proportional to the number of reduced variables. Together these two techniques allow for up to two orders of magnitude dimension reduction without sacrificing the spatially-distributed input structure, with an associated order of magnitude speed-up in simulation time. We demonstrate that both nonlinear spiking behavior and subthreshold response of realistic cells are accurately captured by these low-dimensional models

    Model reduction concepts and substructuring approaches for nonlinear systems

    No full text
    This chapter reviews common nonlinearities that are encountered in engineering structures, with a particular emphasis on geometric nonlinearity. Popular ways to construct reduced order models for geometrically nonlinear problems are discussed. The concept of nonlinear normal modes is presented to help understand the dynamics of these structures, and some recently presented substructuring methods are reviewed
    corecore