1 research outputs found

    Direct detection of supersymmetric dark matter- Theoretical rates for transitions to excited states

    Full text link
    The recent WMAP data have confirmed that exotic dark matter together with the vacuum energy (cosmological constant) dominate in the flat Universe. Supersymmetry provides a natural dark matter candidate, the lightest supersymmetric particle (LSP). Thus the direct dark matter detection is central to particle physics and cosmology. Most of the research on this issue has hitherto focused on the detection of the recoiling nucleus. In this paper we study transitions to the excited states, focusing on the first excited state at 50 keV of Iodine A=127. We find that the transition rate to this excited state is about 10 percent of the transition to the ground state. So, in principle, the extra signature of the gammai ray following its de-excitation can be exploited experimentally.Comment: LaTex, 13 pages, 3 postscript figures, 1 table, to appear in IJMP
    corecore