497 research outputs found

    Super-conservative interpretation of muon g-2 results applied to supersymmetry

    Get PDF
    The recent developments in theory and experiment related to the anomalous magnetic moment of the muon are applied to supersymmetry. We follow a very cautious course, demanding that the supersymmetric contributions fit within five standard deviations of the difference between experiment and the standard model prediction. Arbitrarily small supersymmetric contributions are then allowed, so no upper bounds on superpartner masses result. Nevertheless, non-trivial exclusions are found. We characterize the substantial region of parameter space ruled out by this analysis that has not been probed by any previous experiment. We also discuss some implications of the results for forthcoming collider experiments.Comment: 10 pages, latex, 3 fig

    Probing mSUGRA via the Extreme Universe Space Observatory

    Full text link
    An analysis is carried out within mSUGRA of the estimated number of events originating from upward moving ultra-high energy neutralinos that could be detected by the Extreme Universe Space Observatory (EUSO). The analysis exploits a recently proposed technique that differentiates ultra-high energy neutralinos from ultra-high energy neutrinos using their different absorption lengths in the Earth's crust. It is shown that for a significant part of the parameter space, where the neutralino is mostly a Bino and with squark mass 1\sim 1 TeV, EUSO could see ultra-high energy neutralino events with essentially no background. In the energy range 10^9 GeV < E < 10^11 GeV, the unprecedented aperture of EUSO makes the telescope sensitive to neutralino fluxes as low as 1.1 \times 10^{-6} (E/GeV)^{-1.3} GeV^{-1} cm^{-2} yr^{-1} sr^{-1}, at the 95% CL. Such a hard spectrum is characteristic of supermassive particles' NN-body hadronic decay. The case in which the flux of ultra-high energy neutralinos is produced via decay of metastable heavy particles with uniform distribution throughout the universe is analyzed in detail. The normalization of the ratio of the relics' density to their lifetime has been fixed so that the baryon flux produced in the supermassive particle decays contributes to about 1/3 of the events reported by the AGASA Collaboration below 10^{11} GeV, and hence the associated GeV gamma-ray flux is in complete agreement with EGRET data. For this particular case, EUSO will collect between 4 and 5 neutralino events (with 0.3 of background) in ~ 3 yr of running. NASA's planned mission, the Orbiting Wide-angle Light-collectors (OWL), is also briefly discussed in this context.Comment: Some discussion added, final version to be published in Physical Review

    WMAPing out Supersymmetric Dark Matter and Phenomenology

    Full text link
    The recent WMAP data provide a rather restricted range of the Cold Dark Matter (CDM) density ΩCDMh2 \Omega_{CDM} h^2 of unprecedented accuracy. We combine these new data along with data from BNL E821 experiment measuring (gμ2) {(g_{\mu}-2)}, the {b\goes s \gamma} branching ratio and the light Higgs boson mass bound from LEP, to update our analysis of the allowed boundaries in the parameter space of the Constrained Minimal Supersymmetric Standard Model (CMSSM). The prospects of measuring Supersymmetry at LHC look like a very safe bet, and the potential of discovering SUSY particles at a s=1.1TeV \sqrt{s} = 1.1 \mathrm{TeV} linear collider is enhanced considerably. The implications for Dark Matter direct searches are also discussed.Comment: 12 pages LaTeX, 5 eps figures included, references adde

    Supersymmetric Dark Matter and Yukawa Unification

    Get PDF
    An analysis of supersymmetric dark matter under the Yukawa unification constraint is given. The analysis utilizes the recently discovered region of the parameter space of models with gaugino mass nonuniversalities where large negative supersymmetric corrections to the b quark mass appear to allow bτb-\tau unification for a positive μ\mu sign consistent with the bs+γb\to s+\gamma and gμ2g_{\mu}-2 constraints. In the present analysis we use the revised theoretical determination of aμSMa_{\mu}^{SM} (aμ=(gμ2)/2a_{\mu}= (g_{\mu}-2)/2) in computing the difference aμexpaμSMa_{\mu}^{exp}-a_{\mu}^{SM} which takes account of a reevaluation of the light by light contribution which has a positive sign. The analysis shows that the region of the parameter space with nonuniversalities of the gaugino masses which allows for unification of Yukawa couplings also contains regions which allow satisfaction of the relic density constraint. Specifically we find that the lightest neutralino mass consistent with the relic density constraint, bτb\tau unification for SU(5) and btτb-t-\tau unification for SO(10) in addition to other constraints lies in the region below 80 GeV. An analysis of the maximum and the minimum neutralino-proton scalar cross section for the allowed parameter space including the effect of a new determination of the pion-nucleon sigma term is also given. It is found that the full parameter space for this class of models can be explored in the next generation of proposed dark matter detectors.Comment: 28 pages,nLatex including 5 fig

    Constrained Supersymmetric Flipped SU(5) GUT Phenomenology

    Full text link
    We explore the phenomenology of the minimal supersymmetric flipped SU(5) GUT model (CFSU(5)), whose soft supersymmetry-breaking (SSB) mass parameters are constrained to be universal at some input scale, MinM_{in}, above the GUT scale, MGUTM_{GUT}. We analyze the parameter space of CFSU(5) assuming that the lightest supersymmetric particle (LSP) provides the cosmological cold dark matter, paying careful attention to the matching of parameters at the GUT scale. We first display some specific examples of the evolutions of the SSB parameters that exhibit some generic features. Specifically, we note that the relationship between the masses of the lightest neutralino and the lighter stau is sensitive to MinM_{in}, as is the relationship between the neutralino mass and the masses of the heavier Higgs bosons. For these reasons, prominent features in generic (m1/2,m0)(m_{1/2}, m_0) planes such as coannihilation strips and rapid-annihilation funnels are also sensitive to MinM_{in}, as we illustrate for several cases with tan(beta)=10 and 55. However, these features do not necessarily disappear at large MinM_{in}, unlike the case in the minimal conventional SU(5) GUT. Our results are relatively insensitive to neutrino masses.Comment: 23 pages, 8 figures; (v2) added explanations and corrected typos, version to appear in EPJ

    Lepton Flavour Violation in a Class of Lopsided SO(10) Models

    Full text link
    A class of predictive SO(10) grand unified theories with highly asymmetric mass matrices, known as lopsided textures, has been developed to accommodate the observed mixing in the neutrino sector. The model class effectively determines the rate for charged lepton flavour violation, and in particular the branching ratio for μ>eγ\mu -> e \gamma, assuming that the supersymmetric GUT breaks directly to the constrained minimal supersymmetric standard model (CMSSM). We find that in light of the combined constraints on the CMSSM parameters from direct searches and from the WMAP satellite observations, the resulting predicted rate for μ>eγ\mu -> e \gamma in this model class can be within the current experimental bounds for low tanβ\tan \beta, but that the next generation of μ>eγ\mu -> e \gamma experiments would effectively rule out this model class if LFV is not detected.Comment: 23 page

    What if Supersymmetry Breaking Unifies beyond the GUT Scale?

    Full text link
    We study models in which soft supersymmetry-breaking parameters of the MSSM become universal at some unification scale, MinM_{in}, above the GUT scale, \mgut. We assume that the scalar masses and gaugino masses have common values, m0m_0 and m1/2m_{1/2} respectively, at MinM_{in}. We use the renormalization-group equations of the minimal supersymmetric SU(5) GUT to evaluate their evolutions down to \mgut, studying their dependences on the unknown parameters of the SU(5) superpotential. After displaying some generic examples of the evolutions of the soft supersymmetry-breaking parameters, we discuss the effects on physical sparticle masses in some specific examples. We note, for example, that near-degeneracy between the lightest neutralino and the lighter stau is progressively disfavoured as MinM_{in} increases. This has the consequence, as we show in (m1/2,m0)(m_{1/2}, m_0) planes for several different values of tanβ\tan \beta, that the stau coannihilation region shrinks as MinM_{in} increases, and we delineate the regions of the (Min,tanβ)(M_{in}, \tan \beta) plane where it is absent altogether. Moreover, as MinM_{in} increases, the focus-point region recedes to larger values of m0m_0 for any fixed tanβ\tan \beta and m1/2m_{1/2}. We conclude that the regions of the (m1/2,m0)(m_{1/2}, m_0) plane that are commonly favoured in phenomenological analyses tend to disappear at large MinM_{in}.Comment: 24 pages with 11 eps figures; references added, some figures corrected, discussion extended and figure added; version to appear in EPJ

    Relating the CMSSM and SUGRA models with GUT scale and Super-GUT scale Supersymmetry Breaking

    Full text link
    While the constrained minimal supersymmetric standard model (CMSSM) with universal gaugino masses, m_{1/2}, scalar masses, m_0, and A-terms, A_0, defined at some high energy scale (usually taken to be the GUT scale) is motivated by general features of supergravity models, it does not carry all of the constraints imposed by minimal supergravity (mSUGRA). In particular, the CMSSM does not impose a relation between the trilinear and bilinear soft supersymmetry breaking terms, B_0 = A_0 - m_0, nor does it impose the relation between the soft scalar masses and the gravitino mass, m_0 = m_{3/2}. As a consequence, tan(\beta) is computed given values of the other CMSSM input parameters. By considering a Giudice-Masiero (GM) extension to mSUGRA, one can introduce new parameters to the K\"ahler potential which are associated with the Higgs sector and recover many of the standard CMSSM predictions. However, depending on the value of A_0, one may have a gravitino or a neutralino dark matter candidate. We also consider the consequences of imposing the universality conditions above the GUT scale. This GM extension provides a natural UV completion for the CMSSM.Comment: 16 pages, 11 figures; added erratum correcting several equations and results in Sec.2, Sec.3 and 4 remain unaffected and conclusions unchange

    Supersymmetric Benchmarks with Non-Universal Scalar Masses or Gravitino Dark Matter

    Full text link
    We propose and examine a new set of benchmark supersymmetric scenarios, some of which have non-universal Higgs scalar masses (NUHM) and others have gravitino dark matter (GDM). The scalar masses in these models are either considerably larger or smaller than the narrow range allowed for the same gaugino mass m_{1/2} in the constrained MSSM (CMSSM) with universal scalar masses m_0 and neutralino dark matter. The NUHM and GDM models with larger m_0 may have large branching ratios for Higgs and/or ZZ production in the cascade decays of heavier sparticles, whose detection we discuss. The phenomenology of the GDM models depends on the nature of the next-to-lightest supersymmetric particle (NLSP), which has a lifetime exceeding 10^4 seconds in the proposed benchmark scenarios. In one GDM scenario the NLSP is the lightest neutralino \chi, and the supersymmetric collider signatures are similar to those in previous CMSSM benchmarks, but with a distinctive spectrum. In the other GDM scenarios based on minimal supergravity (mSUGRA), the NLSP is the lighter stau slepton {\tilde \tau}_1, with a lifetime between ~ 10^4 and 3 X 10^6 seconds. Every supersymmetric cascade would end in a {\tilde \tau}_1, which would have a distinctive time-of-flight signature. Slow-moving {\tilde \tau}_1's might be trapped in a collider detector or outside it, and the preferred detection strategy would depend on the {\tilde \tau}_1 lifetime. We discuss the extent to which these mSUGRA GDM scenarios could be distinguished from gauge-mediated models.Comment: 52 pages LaTeX, 13 figure

    Revisiting the Higgs Mass and Dark Matter in the CMSSM

    Full text link
    Taking into account the available accelerator and astrophysical constraints, the mass of the lightest neutral Higgs boson h in the minimal supersymmetric extension of the Standard Model with universal soft supersymmetry-breaking masses (CMSSM) has been estimated to lie between 114 and ~ 130 GeV. Recent data from ATLAS and CMS hint that m_h ~ 125 GeV, though m_h ~ 119 GeV may still be a possibility. Here we study the consequences for the parameters of the CMSSM and direct dark matter detection if the Higgs hint is confirmed, focusing on the strips in the (m_1/2, m_0) planes for different tan beta and A_0 where the relic density of the lightest neutralino chi falls within the range of the cosmological cold dark matter density allowed by WMAP and other experiments. We find that if m_h ~ 125 GeV focus-point strips would be disfavoured, as would the low-tan beta stau-chi and stop -chi coannihilation strips, whereas the stau-chi coannihilation strip at large tan beta and A_0 > 0 would be favoured, together with its extension to a funnel where rapid annihilation via direct-channel H/A poles dominates. On the other hand, if m_h ~ 119 GeV more options would be open. We give parametrizations of WMAP strips with large tan beta and fixed A_0/m_0 > 0 that include portions compatible with m_h = 125 GeV, and present predictions for spin-independent elastic dark matter scattering along these strips. These are generally low for models compatible with m_h = 125 GeV, whereas the XENON100 experiment already excludes some portions of strips where m_h is smaller.Comment: 24 pages, 9 figure
    corecore