32 research outputs found

    Exceptionally Preserved Cambrian Trilobite Digestive System Revealed in 3D by Synchrotron-Radiation X-Ray Tomographic Microscopy

    Get PDF
    The Cambrian ‘Orsten’ fauna comprises exceptionally preserved and phosphatised microscopic arthropods. The external morphology of these fossils is well known, but their internal soft-tissue anatomy has remained virtually unknown. Here, we report the first non-biomineralised tissues from a juvenile polymerid trilobite, represented by digestive structures, glands, and connective strands harboured in a hypostome from the Swedish ‘Orsten’ fauna. Synchrotron-radiation X-ray tomographic microscopy enabled three-dimensional internal recordings at sub-micrometre resolution. The specimen provides the first unambiguous evidence for a J-shaped anterior gut and the presence of a crop with a constricted alimentary tract in the Trilobita. Moreover, the gut is Y-shaped in cross section, probably due to a collapsed lumen of that shape, another feature which has not previously been observed in trilobites. The combination of anatomical features suggests that the trilobite hypostome is functionally analogous to the labrum of euarthropods and that it was a sophisticated element closely integrated with the digestive system. This study also briefly addresses the preservational bias of the ‘Orsten’ fauna, particularly the near-absence of polymerid trilobites, and the taphonomy of the soft-tissue-harbouring hypostome

    Controls on gut phosphatisation : the trilobites from the Weeks Formation Lagerstätte (Cambrian; Utah)

    Get PDF
    Despite being internal organs, digestive structures are frequently preserved in Cambrian Lagerstätten. However, the reasons for their fossilisation and their biological implications remain to be thoroughly explored. This is particularly true with arthropods--typically the most diverse fossilised organisms in Cambrian ecosystems--where digestive structures represent an as-yet underexploited alternative to appendage morphology for inferences on their biology. Here we describe the phosphatised digestive structures of three trilobite species from the Cambrian Weeks Formation Lagerstätte (Utah). Their exquisite, three-dimensional preservation reveals unique details on trilobite internal anatomy, such as the position of the mouth and the absence of a differentiated crop. In addition, the presence of paired pygidial organs of an unknown function is reported for the first time. This exceptional material enables exploration of the relationships between gut phosphatisation and the biology of organisms. Indeed, soft-tissue preservation is unusual in these fossils as it is restricted to the digestive structures, which indicates that the gut played a central role in its own phosphatisation. We hypothesize that the gut provided a microenvironment where special conditions could develop and harboured a source of phosphorus. The fact that gut phosphatization has almost exclusively been observed in arthropods could be explained by their uncommon ability to store ions (including phosphorous) in their digestive tissues. However, in some specimens from the Weeks Formation, the phosphatisation extends to the entire digestive system, suggesting that trilobites might have had some biological particularities not observed in modern arthropods. We speculate that one of them might have been an increased capacity for ion storage in the gut tissues, related to the moulting of their heavily-mineralised carapace

    Digestive and appendicular soft-parts, with behavioural implications, in a large Ordovician trilobite from the Fezouata Lagerstätte, Morocco

    Get PDF
    Trilobites were one of the most successful groups of marine arthropods during the Palaeozoic era, yet their soft-part anatomy is only known from a few exceptionally-preserved specimens found in a handful of localities from the Cambrian to the Devonian. This is because, even if the sclerotized appendages were not destroyed during early taphonomic stages, they are often overprinted by the three-dimensional, mineralised exoskeleton. Inferences about the ventral anatomy and behavioural activities of trilobites can also be derived from the ichnological record, which suggests that most Cruziana and Rusophycus trace fossils were possibly produced by the actions of trilobites. Three specimens of the asaphid trilobite Megistaspis (Ekeraspis) hammondi, have been discovered in the Lower Ordovician Fezouata Konservat-Lagerstätte of southern Morocco, preserving appendages and digestive tract. The digestive structures include a crop with digestive caeca, while the appendages display exopodal setae and slight heteropody (cephalic endopods larger and more spinose than thoracic and pygidial ones). The combination of these digestive structures and the heteropody has never been described together among trilobites, and the latter could assist in the understanding of the production of certain comb-like traces of the Cruziana rugosa group, which are extraordinarily abundant on the shallow marine shelves around Gondwana.This work has been supported by the Spanish Ministry of Economy and Competitiveness, project number CGL2012- 39471/BTE.Peer reviewe

    Phylogenetic and Biogeographic Analysis of Sphaerexochine Trilobites

    Get PDF
    BACKGROUND: Sphaerexochinae is a speciose and widely distributed group of cheirurid trilobites. Their temporal range extends from the earliest Ordovician through the Silurian, and they survived the end Ordovician mass extinction event (the second largest mass extinction in Earth history). Prior to this study, the individual evolutionary relationships within the group had yet to be determined utilizing rigorous phylogenetic methods. Understanding these evolutionary relationships is important for producing a stable classification of the group, and will be useful in elucidating the effects the end Ordovician mass extinction had on the evolutionary and biogeographic history of the group. METHODOLOGY/PRINCIPAL FINDINGS: Cladistic parsimony analysis of cheirurid trilobites assigned to the subfamily Sphaerexochinae was conducted to evaluate phylogenetic patterns and produce a hypothesis of relationship for the group. This study utilized the program TNT, and the analysis included thirty-one taxa and thirty-nine characters. The results of this analysis were then used in a Lieberman-modified Brooks Parsimony Analysis to analyze biogeographic patterns during the Ordovician-Silurian. CONCLUSIONS/SIGNIFICANCE: The genus Sphaerexochus was found to be monophyletic, consisting of two smaller clades (one composed entirely of Ordovician species and another composed of Silurian and Ordovician species). By contrast, the genus Kawina was found to be paraphyletic. It is a basal grade that also contains taxa formerly assigned to Cydonocephalus. Phylogenetic patterns suggest Sphaerexochinae is a relatively distinctive trilobite clade because it appears to have been largely unaffected by the end Ordovician mass extinction. Finally, the biogeographic analysis yields two major conclusions about Sphaerexochus biogeography: Bohemia and Avalonia were close enough during the Silurian to exchange taxa; and during the Ordovician there was dispersal between Eastern Laurentia and the Yangtze block (South China) and between Eastern Laurentia and Avalonia

    Animal Behavior Frozen in Time: Gregarious Behavior of Early Jurassic Lobsters within an Ammonoid Body Chamber

    Get PDF
    Direct animal behavior can be inferred from the fossil record only in exceptional circumstances. The exceptional mode of preservation of ammonoid shells in the Posidonia Shale (Lower Jurassic, lower Toarcian) of Dotternhausen in southern Germany, with only the organic periostracum preserved, provides an excellent opportunity to observe the contents of the ammonoid body chamber because this periostracum is translucent. Here, we report upon three delicate lobsters preserved within a compressed ammonoid specimen of Harpoceras falciferum. We attempt to explain this gregarious behavior. The three lobsters were studied using standard microscopy under low angle light. The lobsters belong to the extinct family of the Eryonidae; further identification was not possible. The organic material of the three small lobsters is preserved more than halfway into the ammonoid body chamber. The lobsters are closely spaced and are positioned with their tails oriented toward each other. The specimens are interpreted to represent corpses rather than molts. The lobsters probably sought shelter in preparation for molting or against predators such as fish that were present in Dotternhausen. Alternatively, the soft tissue of the ammonoid may have been a source of food that attracted the lobsters, or it may have served as a long-term residency for the lobsters (inquilinism). The lobsters represent the oldest known example of gregariousness amongst lobsters and decapods in the fossil record. Gregarious behavior in lobsters, also known for extant lobsters, thus developed earlier in earth's history than previously known. Moreover, this is one of the oldest known examples of decapod crustaceans preserved within cephalopod shells

    Trilobite Clusters: What do they tell us? A preliminary investigation

    Full text link
    Clusters or aggregations of fully and/or partially articulated trilobite exoskeletons have fascinated palaeontologists and fossil collectors for well over a hundred years. Professional palaeontologists have been interested in their implications for trilobite palaeobiology (e.g., behaviour), whilst collectors have admired them for their aesthetic qualities (Johnson, 1985). Studies on trilobite clusters began over a century ago, with some of the earliest papers by Walcott (1875, 1881) and Beecher (1894). However, it was the pioneering work of S.E. Speyer (1985, 1987, 1990, 1991; Speyer and Brett, 1985) on Middle Devonian trilobite clusters from New York that brought trilobite behavioural palaeobiology to the fore. Since this time, there have been only a limited number of case studies on the interpretation of trilobite clusters (see Paterson et al., 2007 and references therein)
    corecore