29,776 research outputs found

    Primordial nucleosynthesis in higher dimensional cosmology

    Full text link
    We investigate nucleosynthesis and element formation in the early universe in the framework of higher dimensional cosmology. For this purpose we utilize a previous solution of the present author, which may be termed as the generalized Friedmann-Robertson-Walker model. We find that temperature decays less rapidly in higher dimensional cosmology, which we believe may have nontrivial consequences \emph{vis-a-vis} primordial physics

    Nature of the glassy magnetic state in Cu2.84_{2.84}Mn0.44_{0.44}Al0.72_{0.72} shape memory alloy

    Full text link
    The magnetic ground state of the ferromagnetic shape memory alloy of nominal composition Cu2.84_{2.84}Mn0.44_{0.44}Al0.72_{0.72} was investigated. The sample shows reentry of a glassy magnetic phase below the martensitic transition temperature, which is found to have complex character with two distinct anomalies in the temperature dependent ac susceptibility data. The sample retains its glassy phase even below the second transition as evident from the magnetic memory measurements in different protocols. Existence of two transitions along with their observed nature suggest that the system can be described by the mean field Heisenberg model of reentrant spin glass as proposed by Gabay and Toulous. \cite{rsg-GT1} The sample provides a fascinating example where a Gabay-Toulous type spin glass state is triggered by a first order magneto-structural transition

    The large deviation principle for the Erd\H{o}s-R\'enyi random graph

    Full text link
    What does an Erdos-Renyi graph look like when a rare event happens? This paper answers this question when p is fixed and n tends to infinity by establishing a large deviation principle under an appropriate topology. The formulation and proof of the main result uses the recent development of the theory of graph limits by Lovasz and coauthors and Szemeredi's regularity lemma from graph theory. As a basic application of the general principle, we work out large deviations for the number of triangles in G(n,p). Surprisingly, even this simple example yields an interesting double phase transition.Comment: 24 pages. To appear in European J. Comb. (special issue on graph limits

    Spherical collapse of a heat conducting fluid in higher dimensions without horizon

    Full text link
    We consider a scenario where the interior spacetime,described by a heat conducting fluid sphere is matched to a Vaidya metric in higher dimensions.Interestingly we get a class of solutions, where following heat radiation the boundary surface collapses without the appearance of an event horizon at any stage and this happens with reasonable properties of matter field.The non-occurrence of a horizon is due to the fact that the rate of mass loss exactly counterbalanced by the fall of boundary radius.Evidently this poses a counter example to the so-called cosmic censorship hypothesis.Two explicit examples of this class of solutions are also given and it is observed that the rate of collapse is delayed with the introduction of extra dimensions.The work extends to higher dimensions our previous investigation in 4D.Comment: 6 page
    • …
    corecore