3 research outputs found

    Interionic Pair Potential, hard sphere diameter and entropy of mixing of NaCd compound forming binary molten alloys under the framework of Pseudopotential theory

    Get PDF
    The observed asymmetric behaviour of mixing of  NaCd liquid alloys around equiatomic composition with smaller negative values for free energy of mixing at compound forming concentration, i.e. GMXS = -4.9KJ at Ccd =0.66 has  aroused our interest to undertake a theoretical investigation of this system.A simple statistical mechanical theory based on compound formation model has been used to investigate the energetics of formation of intermetallic compound Cd2Na in the melt through the study of entropy of mixing.Besides, the interionic interactions between component atoms Na and Cd of the alloys have been understood through the study of interionic pair potential фij(r), calculated from pseudopotential theory in the light of CF model.Our study of фij(r) suggest that the effective interaction between Na-Na atoms decreases on alloying with Cd atom, being minimum for compound forming alloy( Cd 0.66 Na 0.34 ).The nearest neighbor distance between Na-Na atoms does not alter on alloying. Like wise Na-Na,  effective interaction between  Cd-Cd atom decreases from pure state to NaCd alloys, being smaller at compound forming  concentration Cd 0.66 Na 0.34.The computed values of SM from pseudopotential theory are positive at all concentrations, but the agreement between theory and experimental is not satisfactory. This might be happening due to parameterisation of σ3 and Ψcompound

    Effect of Methanol on Viscosity of Aqueous Solutions of Cationic Surfactants at 298.15 to 323.15 K

    No full text
    Viscosity measurements have been made to the solutions of dodecyltrimethylammonium bromide (DTAB) and cetyltrimethylammonium bromide (CTAB) in 0.10, 0.20, 0.30, and 0.40 volume fractions of methanol in methanol-water mixed solvent media at 298.15, 308.15, 318.15, and 323.25 K. Critical micelle concentration (CMC) values have been determined. From relative viscosity for surfactant solutions, related viscosity B coefficients are calculated and the values are interpreted in terms of solute-solvent interactions
    corecore