80 research outputs found
Chiral corrections to the isovector double scattering term for the pion-deuteron scattering length
The empirical value of the real part of the pion-deuteron scattering length
can be well understood in terms of the dominant isovector -double
scattering contribution. We calculate in chiral perturbation theory all
one-pion loop corrections to this double scattering term which in the case of
-scattering close the gap between the current-algebra prediction and the
empirical value of the isovector threshold T-matrix . In addition
to closing this gap there is in the -system a loop-induced off-shell
correction for the exchanged virtual pion. Its coordinate space representation
reveals that it is equivalent to -exchange in the deuteron. We evaluate
the chirally corrected double scattering term and the off-shell contribution
with various realistic deuteron wave functions. We find that the off-shell
correction contributes at most -8% and that the isovector double scattering
term explains at least 90% of the empirical value of the real part of the -scattering length.Comment: 4 pages, 2 figures, to be published in The Physical Review
X-ray emission during the muonic cascade in hydrogen
We report our investigations of X rays emitted during the muonic cascade in
hydrogen employing charge coupled devices as X-ray detectors. The density
dependence of the relative X-ray yields for the muonic hydrogen lines (K_alpha,
K_beta, K_gamma) has been measured at densities between 0.00115 and 0.97 of
liquid hydrogen density. In this density region collisional processes dominate
the cascade down to low energy levels. A comparison with recent calculations is
given in order to demonstrate the influence of Coulomb deexcitation.Comment: 5 pages, Tex, 4 figures, submitted to Physical Review Letter
The DEAR experiment on DAΦNE
DEAR is one of the first experiments at the new DAΦNE Ø-factory at the Laboratori Nazionali di Frascati dell'INFN. The objective of the DEAR experiment is to perform a precision measurement of the strong interaction shifts and widths of the K-series lines in kaonic hydrogen and the first observation of the same quantities in kaonic deuterium. The aim is to obtain a precise determination of the isospin-dependent kaon-nucleon scattering lengths which will represent a breakthrough in KN low-energy phenomenology and will allow us to determine the kaon-nucleon sigma terms. The sigma terms give a direct measurement of chiral symmetry breaking and are connected to the strangeness content of the proton. First results on background measurements with the DEAR NTP setup installed on DAΦNE are reported
Determination of the pion-nucleon coupling constant and scattering lengths
We critically evaluate the isovector GMO sum rule for forward pion-nucleon
scattering using the recent precision measurements of negatively charged
pion-proton and pion-deuteron scattering lengths from pionic atoms. We deduce
the charged-pion-nucleon coupling constant, with careful attention to
systematic and statistical uncertainties. This determination gives, directly
from data a pseudoscalar coupling constant of
14.11+-0.05(statistical)+-0.19(systematic) or a pseudovector one of 0.0783(11).
This value is intermediate between that of indirect methods and the direct
determination from backward neutron-proton differential scattering cross
sections. We also use the pionic atom data to deduce the coherent symmetric and
antisymmetric sums of the negatively charged pion-proton and pion-neutron
scattering lengths with high precision. The symmetric sum gives
0.0012+-0.0002(statistical)+-0.0008 (systematic) and the antisymmetric one
0.0895+-0.0003(statistical)+-0.0013(systematic), both in units of inverse
charged pion-mass. For the need of the present analysis, we improve the
theoretical description of the pion-deuteron scattering length.Comment: 27 pages, 5 figures, submitted to Phys. Rev. C, few modifications and
clarifications, no change in substance of the pape
Old World Arenaviruses Enter the Host Cell via the Multivesicular Body and Depend on the Endosomal Sorting Complex Required for Transport
The highly pathogenic Old World arenavirus Lassa virus (LASV) and the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) use α-dystroglycan as a cellular receptor and enter the host cell by an unusual endocytotic pathway independent of clathrin, caveolin, dynamin, and actin. Upon internalization, the viruses are delivered to acidified endosomes in a Rab5-independent manner bypassing classical routes of incoming vesicular trafficking. Here we sought to identify cellular factors involved in the unusual and largely unknown entry pathway of LASV and LCMV. Cell entry of LASV and LCMV required microtubular transport to late endosomes, consistent with the low fusion pH of the viral envelope glycoproteins. Productive infection with recombinant LCMV expressing LASV envelope glycoprotein (rLCMV-LASVGP) and LCMV depended on phosphatidyl inositol 3-kinase (PI3K) as well as lysobisphosphatidic acid (LBPA), an unusual phospholipid that is involved in the formation of intraluminal vesicles (ILV) of the multivesicular body (MVB) of the late endosome. We provide evidence for a role of the endosomal sorting complex required for transport (ESCRT) in LASV and LCMV cell entry, in particular the ESCRT components Hrs, Tsg101, Vps22, and Vps24, as well as the ESCRT-associated ATPase Vps4 involved in fission of ILV. Productive infection with rLCMV-LASVGP and LCMV also critically depended on the ESCRT-associated protein Alix, which is implicated in membrane dynamics of the MVB/late endosomes. Our study identifies crucial cellular factors implicated in Old World arenavirus cell entry and indicates that LASV and LCMV invade the host cell passing via the MVB/late endosome. Our data further suggest that the virus-receptor complexes undergo sorting into ILV of the MVB mediated by the ESCRT, possibly using a pathway that may be linked to the cellular trafficking and degradation of the cellular receptor
Conserved Genes Act as Modifiers of Invertebrate SMN Loss of Function Defects
Spinal Muscular Atrophy (SMA) is caused by diminished function of the Survival of Motor Neuron (SMN) protein, but the molecular pathways critical for SMA pathology remain elusive. We have used genetic approaches in invertebrate models to identify conserved SMN loss of function modifier genes. Drosophila melanogaster and Caenorhabditis elegans each have a single gene encoding a protein orthologous to human SMN; diminished function of these invertebrate genes causes lethality and neuromuscular defects. To find genes that modulate SMN function defects across species, two approaches were used. First, a genome-wide RNAi screen for C. elegans SMN modifier genes was undertaken, yielding four genes. Second, we tested the conservation of modifier gene function across species; genes identified in one invertebrate model were tested for function in the other invertebrate model. Drosophila orthologs of two genes, which were identified originally in C. elegans, modified Drosophila SMN loss of function defects. C. elegans orthologs of twelve genes, which were originally identified in a previous Drosophila screen, modified C. elegans SMN loss of function defects. Bioinformatic analysis of the conserved, cross-species, modifier genes suggests that conserved cellular pathways, specifically endocytosis and mRNA regulation, act as critical genetic modifiers of SMN loss of function defects across species
Comparative study and identification of potent eukaryotic transcriptional repressors in gene switch systems.
In mammalian cells, proper gene regulation is achieved by the complex interplay of transcription factors that activate or repress gene expression by binding to the regulatory regions of target promoters. While transcriptional activators have been extensively characterised and classified into functional groups, relatively little is known about the comparative strength and cell type-specificity of transcriptional repressors. Here, we have compared the ability of a series of eukaryotic repression domains to silence basal and activated transcription. A series of the most potent repression domains was further tested in the context of a gene therapy gene-switch system in various cell types. The results indicate that the analysed repression domains exert varying silencing activities in different promoter contexts. Furthermore, their potential for gene silencing varies also depending on the cellular context. When multimerised within one chimeric repressor protein, particular combinations of repressor domains were found to display synergistic repressing effects and efficient repression in a panel of cell lines. This approach thus allowed the identification of transcriptional repressors that are both potent and versatile in terms of cellular specificity as a basis for gene switch systems
A regulatory network for the efficient control of transgene expression.
BACKGROUND: Expression of heterologous genes in mammalian cells or organisms for therapeutic or experimental purposes often requires tight control of transgene expression. Specifically, the following criteria should be met: no background gene activity in the off-state, high gene expression in the on-state, regulated expression over an extended period, and multiple switching between on- and off-states. METHODS: Here, we describe a genetic switch system for controlled transgene transcription using chimeric repressor and activator proteins functioning in a novel regulatory network. In the off-state, the target transgene is actively silenced by a chimeric protein consisting of multimerized eukaryotic transcriptional repression domains fused to the DNA-binding tetracycline repressor. In the on-state, the inducer drug doxycycline affects both the derepression of the target gene promoter and activation by the GAL4-VP16 transactivator, which in turn is under the control of an autoregulatory feedback loop. RESULTS: The hallmark of this new system is the efficient transgene silencing in the off-state, as demonstrated by the tightly controlled expression of the highly cytotoxic diphtheria toxin A gene. Addition of the inducer drug allows robust activation of transgene expression. In stably transfected cells, this control is still observed after months of repeated cycling between the repressed and activated states of the target genes. CONCLUSIONS: This system permits tight long-term regulation when stably introduced into cell lines. The underlying principles of this network system should have general applications in biotechnology and gene therapy
- …