631 research outputs found

    Season of birth and chess expertise

    Get PDF
    The origin of talent and expertise is currently the subject of intense debate, with explanations ranging from purely biological to purely environmental. This report shows that the population of expert chess players in the north hemisphere shows a seasonal pattern, with an excess of births in late winter and early spring. This effect remains when taking into account the distribution of births in the population at large, using statistics from the European Union member countries. A similar pattern has been found with schizophrenia, and the possible link between these two phenomena is discussed

    Expertise and intuition: A tale of three theories

    Get PDF
    Several authors have hailed intuition as one of the defining features of expertise. In particular, while disagreeing on almost anything that touches on human cognition and artificial intelligence, Hubert Dreyfus and Herbert Simon agreed on this point. However, the highly influential theories of intuition they proposed differed in major ways, especially with respect to the role given to search and as to whether intuition is holistic or analytic. Both theories suffer from empirical weaknesses. In this paper, we show how, with some additions, a recent theory of expert memory (the template theory) offers a coherent and wide-ranging explanation of intuition in expert behaviour. It is shown that the theory accounts for the key features of intuition: it explains the rapid onset of intuition and its perceptual nature, provides mechanisms for learning, incorporates processes showing how perception is linked to action and emotion, and how experts capture the entirety of a situation. In doing so, the new theory addresses the issues problematic for Dreyfus’s and Simon’s theories. Implications for research and practice are discussed

    Artificial Neural Network Simulations of Human Learning Suggest the Presence of Metastable Attractors in Visual Memory

    Get PDF
    The attractor hypothesis states that knowledge is encoded as topologically-defined, stable configurations of connected cell assemblies. Irrespective to its original state, a network encoding new information will thus self-organize to reach the necessary stable state. To investigate memory structure, a multimodular neural network architecture, termed Magnitron, has been developed. Magnitron is a biologically-inspired cognitive architecture that simulates digit recognition. It implements perceptual input, human visual long-term memory in the ventral visual pathway and, to a lesser extent, working memory processes. To test the attractor hypothesis a Monte Carlo simulation of 10,000 individuals has been run. Each simulated learner was trained in recognizing the ten digits from novice to expert stage. The results replicate several features of human learning. First, they show that random connectivity in long-term visual memory accounts for novices’ performance. Second, the learning curves revealed that Magnitron simulates the well-known psychological power law of practice. Third, after learning took place, performance departed from chance level and reached a minimum target of 95% of correct hits; hence simulating human performance in children (i.e., when digits are learned). Magnitron also replicates biological findings. In line with research using voxel-based morphometry, Magnitron showed that matter density increases while training is taken place. Crucially, the spatial analysis of the connectivity patterns in long-term visual memory supported the hypothesis of a stable attractor. The significance of these results regarding memory theory is discussed

    Challenges for Metabolomics as a Tool in Safety Assessments

    Get PDF

    The neural signature of emotional memories in serial crimes

    Get PDF
    Neural plasticity is the process whereby semantic information and emotional responses are stored in neural networks. It is hypothesized that the neural networks built over time to encode the sexual fantasies that motivate serial killers to act should display a unique, detectable activation pattern. The pathological neural watermark hypothesis posits that such networks comprise activation of brain sites that reflect four cognitive components: autobiographical memory, sexual arousal, aggression, and control over aggression. The neural sites performing these cognitive functions have been successfully identified by previous research. The key findings are reviewed to hypothesise the typical pattern of activity that serial killers should display. Through the integration of biological findings into one framework, the neural approach proposed in this paper is in stark contrast with the many theories accounting for serial killers that offer non-medical taxonomies. The pathological neural watermark hypothesis offers a new framework to understand and detect deviant individuals. The technical and legal issues are briefly discussed

    Intuition in chess: a study with world-class players

    Get PDF
    Intuition plays a central role in cognition in general and expertise in particular. Dreyfus and Dreyfus’s (1986) and Gobet and Chassy’s (2008) theories of expert intuition propose that a characteristic feature of expert intuition is the holistic understanding displayed by experts. The ideal way to test this prediction is to use highly expert participants and short presentation times. Chess players (N = 63), ranging from candidate masters to world-class players, had to evaluate chess problems. Evaluating the problems required an understanding of the position as a whole. Results demonstrated an effect of skill (better players had better evaluations), complexity (simpler positions were better evaluated than complex positions) and balance (accuracy diminished when the true evaluations became more extreme). A regression analysis showed that skill accounted for 44% of the variance in evaluation error. These important results support the central role of holistic intuition in expertise

    Measuring Chess Experts' Single-Use Sequence Knowledge: An Archival Study of Departure from ‘Theoretical’ Openings

    Get PDF
    The respective roles of knowledge and search have received considerable attention in the literature on expertise. However, most of the evidence on knowledge has been indirect – e.g., by inferring the presence of chunks in long-term memory from performance in memory recall tasks. Here we provide direct estimates of the amount of monochrestic (single use) and rote knowledge held by chess players of varying skill levels. From a large chess database, we analyzed 76,562 games played in 2008 by individuals ranging from Class B players (average players) to Masters to measure the extent to which players deviate from previously known initial sequences of moves (“openings”). Substantial differences were found in the number of moves known by players of different skill levels, with more expert players knowing more moves. Combined with assumptions independently made about the branching factor in master games, we estimate that masters have memorized about 100,000 opening moves. Our results support the hypothesis that monochrestic knowledge is essential for reaching high levels of expertise in chess. They provide a direct, quantitative estimate of the number of opening moves that players have to know to reach master level
    corecore