5,623 research outputs found
Conical scan impact study. Volume 2: Small local user data processing facility
The impact of a conical scan versus a linear scan multispectral scanner (MSS) instrument on a small local-user data processing facility was studied. User data requirements were examined to determine the unique system rquirements for a low cost ground system (LCGS) compatible with the Earth Observatory Satellite (EOS) system. Candidate concepts were defined for the LCGS and preliminary designs were developed for selected concepts. The impact of a conical scan MSS versus a linear scan MSS was evaluated for the selected concepts. It was concluded that there are valid user requirements for the LCGS and, as a result of these requirements, the impact of the conical scanner is minimal, although some new hardware development for the LCGS is necessary to handle conical scan data
Transition of amorphous to crystalline oxide film in initial oxide overgrowth on liquid metals
It is important to understand the mechanism of oxidation in the initial stage on the free surface of liquid metals. Mittemeijer and co-workers recently developed a thermodynamic model to study the oxide overgrowth on a solid metal surface. Based on this model, we have developed a thermodynamic model to analyse the thermodynamic stability of oxide overgrowth on liquid metals. The thermodynamic model calculation revealed that the amorphous oxide phase is thermodynamically preferred up to 1.3 and 0.35 nm respectively, in the initial oxide overgrowth on liquid Al and Ga at the corresponding melting point. However, the amorphous phase is thermodynamically unstable in the initial oxide overgrowth on liquid Mg. The thermodynamic stability of amorphous phase in the Al and Ga oxide systems is attributed to lower sums of surface and interfacial energies for amorphous phases, compared to that of the corresponding crystalline phases.Financial support under grant EP/H026177/1 from the EPSRC was used
Expert chess memory: Revisiting the chunking hypothesis
After reviewing the relevant theory on chess expertise, this paper re-examines experimentally the finding of Chase and Simon (1973a) that the differences in ability of chess players at different skill levels to copy and to recall positions are attributable to the experts' storage of thousands of chunks (patterned clusters of pieces) in long-term memory. Despite important differences in the experimental apparatus, the data of the present experiments regarding latencies and chess relations between successively placed pieces are highly correlated with those of Chase and Simon. We conclude that the 2-second inter-chunk interval used to define chunk boundaries is robust, and that chunks have psychological reality. We discuss the possible reasons why Masters in our new study used substantially larger chunks than the Master of the 1973 study, and extend the chunking theory to take account of the evidence for large retrieval structures (templates) in long-term memory
A study of the phase transition in the usual statistical model for nuclear multifragmentation
We use a simplified model which is based on the same physics as inherent in
most statistical models for nuclear multifragmentation. The simplified model
allows exact calculations for thermodynamic properties of systems of large
number of particles. This enables us to study a phase transition in the model.
A first order phase transition can be tracked down. There are significant
differences between this phase transition and some other well-known cases
What Does it Mean to Adopt a Trauma-Informed Approach to Research?: Reflections on a Participatory Project With Young People Seeking Asylum in the UK
Trauma-informed (T-I) approaches to working with vulnerable people have gained popularity in practice but are rarely used in academic research and little is known about the challenges of conducting a T-I approach to participatory research. This paper reflects on our experiences of a participatory peer research project involving unaccompanied young people seeking asylum (16–25 years) during the Covid-19 pandemic. Whilst the project adhered to a robust ethical framework, it became apparent at an early stage in the empirical phase that our methods needed to acknowledge and accommodate the trauma of those involved in the project much more thoughtfully and effectively than our ethical framework suggested. With this in mind, we set about identifying the key elements of a T-I approach to research and how these might add value to research with vulnerable and marginalised populations. Our model of a T-I approach to peer research is framed around five core principles: working reflectively with those with lived experience; contextualising trauma; nurturing trust; showing care; and empowering those involved in and affected by the research
Gravitationally Collapsing Shells in (2+1) Dimensions
We study gravitationally collapsing models of pressureless dust, fluids with
pressure, and the generalized Chaplygin gas (GCG) shell in (2+1)-dimensional
spacetimes. Various collapse scenarios are investigated under a variety of the
background configurations such as anti-de Sitter(AdS) black hole, de Sitter
(dS) space, flat and AdS space with a conical deficit. As with the case of a
disk of dust, we find that the collapse of a dust shell coincides with the
Oppenheimer-Snyder type collapse to a black hole provided the initial density
is sufficiently large. We also find -- for all types of shell -- that collapse
to a naked singularity is possible under a broad variety of initial conditions.
For shells with pressure this singularity can occur for a finite radius of the
shell. We also find that GCG shells exhibit diverse collapse scenarios, which
can be easily demonstrated by an effective potential analysis.Comment: 27 pages, Latex, 11 figures, typos corrected, references added, minor
amendments in introduction and conclusion introd
Studies in the statistical and thermal properties of hadronic matter under some extreme conditions
The thermal and statistical properties of hadronic matter under some extreme
conditions are investigated using an exactly solvable canonical ensemble model.
A unified model describing both the fragmentation of nuclei and the thermal
properties of hadronic matter is developed. Simple expressions are obtained for
quantities such as the hadronic equation of state, specific heat,
compressibility, entropy, and excitation energy as a function of temperature
and density. These expressions encompass the fermionic aspect of nucleons, such
as degeneracy pressure and Fermi energy at low temperatures and the ideal gas
laws at high temperatures and low density. Expressions are developed which
connect these two extremes with behavior that resembles an ideal Bose gas with
its associated Bose condensation. In the thermodynamic limit, an infinite
cluster exists below a certain critical condition in a manner similar to the
sudden appearance of the infinite cluster in percolation theory. The importance
of multiplicity fluctuations is discussed and some recent data from the EOS
collaboration on critical point behavior of nuclei can be accounted for using
simple expressions obtained from the model.Comment: 22 pages, revtex, includes 6 figures, submitted to Phys. Rev.
Canonical and Microcanonical Distributions for Fermi Systems
Recursion relations are presented that allow exact calculation of canonical
and microcanonical partition functions of degenerate Fermi systems, assuming no
explicit two-body interactions. Calculations of the level density, sorted by
angular momentum, are presented for Ni-56 are presented. The issue of treating
unbound states is also addressed.Comment: 5 pages, 5 figure
Observing biogeochemical cycles at global scales with profiling floats and gliders: prospects for a global array
Chemical and biological sensor technologies have advanced rapidly in the past five years. Sensors that require low power and operate for multiple years are now available for oxygen, nitrate, and a variety of bio-optical properties that serve as proxies for important components of the carbon cycle (e.g., particulate organic carbon). These sensors have all been deployed successfully for long periods, in some cases more than three years, on platforms such as profiling floats or gliders. Technologies for pH, pCO2, and particulate inorganic carbon are maturing rapidly as well. These sensors could serve as the enabling technology for a global biogeochemical observing system that might operate on a scale comparable to the current Argo array. Here, we review the scientific motivation and the prospects for a global observing system for ocean biogeochemistry
Randomly Broken Nuclei and Disordered Systems
Similarities between models of fragmenting nuclei and disordered systems in
condensed matter suggest corresponding methods. Several theoretical models of
fragmentation investigated in this fashion show marked differences, indicating
possible new methods for distinguishing models using yield data. Applying
nuclear methods to disordered systems also yields interesting results.Comment: 10 pages, 4 figure
- …