136 research outputs found
Fast parametric analysis of trimmed multi-patch isogeometric Kirchhoff-Love shells using a local reduced basis method
This contribution presents a model order reduction framework for real-time
efficient solution of trimmed, multi-patch isogeometric Kirchhoff-Love shells.
In several scenarios, such as design and shape optimization, multiple
simulations need to be performed for a given set of physical or geometrical
parameters. This step can be computationally expensive in particular for real
world, practical applications. We are interested in geometrical parameters and
take advantage of the flexibility of splines in representing complex
geometries. In this case, the operators are geometry-dependent and generally
depend on the parameters in a non-affine way. Moreover, the solutions obtained
from trimmed domains may vary highly with respect to different values of the
parameters. Therefore, we employ a local reduced basis method based on
clustering techniques and the Discrete Empirical Interpolation Method to
construct affine approximations and efficient reduced order models. In
addition, we discuss the application of the reduction strategy to parametric
shape optimization. Finally, we demonstrate the performance of the proposed
framework to parameterized Kirchhoff-Love shells through benchmark tests on
trimmed, multi-patch meshes including a complex geometry. The proposed approach
is accurate and achieves a significant reduction of the online computational
cost in comparison to the standard reduced basis method.Comment: 43 pages, 21 figures, 3 table
Development and application of computational methodologies in qualitative modeling
La présente thèse s'intitule "Développent et Application des Méthodologies Computationnelles pour la Modélisation Qualitative". Elle comprend tous les différents projets que j'ai entrepris en tant que doctorante. Plutôt qu'une mise en oeuvre systématique d'un cadre défini a priori, cette thèse devrait être considérée comme une exploration des méthodes qui peuvent nous aider à déduire le plan de processus regulatoires et de signalisation. Cette exploration a été mue par des questions biologiques concrètes, plutôt que par des investigations théoriques. Bien que tous les projets aient inclus des systèmes divergents (réseaux régulateurs de gènes du cycle cellulaire, réseaux de signalisation de cellules pulmonaires) ainsi que des organismes (levure à fission, levure bourgeonnante, rat, humain), nos objectifs étaient complémentaires et cohérents.
Le projet principal de la thèse est la modélisation du réseau de l'initiation de septation (SIN) du S.pombe. La cytokinèse dans la levure à fission est contrôlée par le SIN, un réseau signalant de protéines kinases qui utilise le corps à pôle-fuseau comme échafaudage. Afin de décrire le comportement qualitatif du système et prédire des comportements mutants inconnus, nous avons décidé d'adopter l'approche de la modélisation booléenne. Dans cette thèse, nous présentons la construction d'un modèle booléen étendu du SIN, comprenant la plupart des composantes et des régulateurs du SIN en tant que noeuds individuels et testable expérimentalement. Ce modèle utilise des niveaux d'activité du CDK comme noeuds de contrôle pour la simulation d'évènements du SIN à différents stades du cycle cellulaire. Ce modèle a été optimisé en utilisant des expériences d'un seul "knock-out" avec des effets phénotypiques connus comme set d'entraînement. Il a permis de prédire correctement un set d'évaluation de "knock-out" doubles. De plus, le modèle a fait des prédictions in silico qui ont été validées in vivo, permettant d'obtenir de nouvelles idées de la régulation et l'organisation hiérarchique du SIN.
Un autre projet concernant le cycle cellulaire qui fait partie de cette thèse a été la construction d'un modèle qualitatif et minimal de la réciprocité des cyclines dans la S.cerevisiae. Les protéines Clb dans la levure bourgeonnante présentent une activation et une dégradation caractéristique et séquentielle durant le cycle cellulaire, qu'on appelle communément les vagues des Clbs. Cet évènement est coordonné avec la courbe d'activation inverse du Sic1, qui a un rôle inhibitoire dans le système. Pour l'identification des modèles qualitatifs minimaux qui peuvent expliquer ce phénomène, nous avons sélectionné des expériences bien définies et construit tous les modèles minimaux possibles qui, une fois simulés, reproduisent les résultats attendus. Les modèles ont été filtrés en utilisant des simulations ODE qualitatives et standardisées; seules celles qui reproduisaient le phénotype des vagues ont été gardées. L'ensemble des modèles minimaux peut être utilisé pour suggérer des relations regulatoires entre les molécules participant qui peuvent ensuite être testées expérimentalement.
Enfin, durant mon doctorat, j'ai participé au SBV Improver Challenge. Le but était de déduire des réseaux spécifiques à des espèces (humain et rat) en utilisant des données de phosphoprotéines, d'expressions des gènes et des cytokines, ainsi qu'un réseau de référence, qui était mis à disposition comme donnée préalable. Notre solution pour ce concours a pris la troisième place. L'approche utilisée est expliquée en détail dans le dernier chapitre de la thèse.
--
The present dissertation is entitled "Development and Application of Computational Methodologies in Qualitative Modeling". It encompasses the diverse projects that were undertaken during my time as a PhD student. Instead of a systematic implementation of a framework defined a priori, this thesis should be considered as an exploration of the methods that can help us infer the blueprint of regulatory and signaling processes. This exploration was driven by concrete biological questions, rather than theoretical investigation. Even though the projects involved divergent systems (gene regulatory networks of cell cycle, signaling networks in lung cells), as well as organisms (fission yeast, budding yeast, rat, human), our goals were complementary and coherent.
The main project of the thesis is the modeling of the Septation Initiation Network (SIN) in S.pombe. Cytokinesis in fission yeast is controlled by the SIN, a protein kinase signaling network that uses the spindle pole body as scaffold. In order to describe the qualitative behavior of the system and predict unknown mutant behaviors we decided to adopt a Boolean modeling approach. In this thesis, we report the construction of an extended, Boolean model of the SIN, comprising most SIN components and regulators as individual, experimentally testable nodes. The model uses CDK activity levels as control nodes for the simulation of SIN related events in different stages of the cell cycle. The model was optimized using single knock-out experiments of known phenotypic effect as a training set, and was able to correctly predict a double knock-out test set. Moreover, the model has made in silico predictions that have been validated in vivo, providing new insights into the regulation and hierarchical organization of the SIN.
Another cell cycle related project that is part of this thesis was to create a qualitative, minimal model of cyclin interplay in S.cerevisiae. CLB proteins in budding yeast present a characteristic, sequential activation and decay during the cell cycle, commonly referred to as Clb waves. This event is coordinated with the inverse activation curve of Sic1, which has an inhibitory role in the system. To generate minimal qualitative models that can explain this phenomenon, we selected well-defined experiments and constructed all possible minimal models that, when simulated, reproduce the expected results. The models were filtered using standardized qualitative ODE simulations; only the ones reproducing the wave-like phenotype were kept. The set of minimal models can be used to suggest regulatory relations among the participating molecules, which will subsequently be tested experimentally.
Finally, during my PhD I participated in the SBV Improver Challenge. The goal was to infer species-specific (human and rat) networks, using phosphoprotein, gene expression and cytokine data and a reference network provided as prior knowledge. Our solution to the challenge was selected as in the final chapter of the thesis
HumaReC: Continuous Data Publishing in the Humanities
HumaReC, a Swiss National Foundation project, aims to test a new publication process: continuous data publishing. This model requires research partnerships throughout the process, from the original document source to the publisher and making the data available as soon as it is produced. The HumaReC object of study is a trilingual, 12th century, New Testament manuscript.
https://ercim-news.ercim.eu/images/stories/EN111/EN111-web.pd
A 2D/3D image analysis system to track fluorescently labeled structures in rod-shaped cells: application to measure spindle pole asymmetry during mitosis.
BACKGROUND: The yeast Schizosaccharomyces pombe is frequently used as a model for studying the cell cycle. The cells are rod-shaped and divide by medial fission. The process of cell division, or cytokinesis, is controlled by a network of signaling proteins called the Septation Initiation Network (SIN); SIN proteins associate with the SPBs during nuclear division (mitosis). Some SIN proteins associate with both SPBs early in mitosis, and then display strongly asymmetric signal intensity at the SPBs in late mitosis, just before cytokinesis. This asymmetry is thought to be important for correct regulation of SIN signaling, and coordination of cytokinesis and mitosis. In order to study the dynamics of organelles or large protein complexes such as the spindle pole body (SPB), which have been labeled with a fluorescent protein tag in living cells, a number of the image analysis problems must be solved; the cell outline must be detected automatically, and the position and signal intensity associated with the structures of interest within the cell must be determined. RESULTS: We present a new 2D and 3D image analysis system that permits versatile and robust analysis of motile, fluorescently labeled structures in rod-shaped cells. We have designed an image analysis system that we have implemented as a user-friendly software package allowing the fast and robust image-analysis of large numbers of rod-shaped cells. We have developed new robust algorithms, which we combined with existing methodologies to facilitate fast and accurate analysis. Our software permits the detection and segmentation of rod-shaped cells in either static or dynamic (i.e. time lapse) multi-channel images. It enables tracking of two structures (for example SPBs) in two different image channels. For 2D or 3D static images, the locations of the structures are identified, and then intensity values are extracted together with several quantitative parameters, such as length, width, cell orientation, background fluorescence and the distance between the structures of interest. Furthermore, two kinds of kymographs of the tracked structures can be established, one representing the migration with respect to their relative position, the other representing their individual trajectories inside the cell. This software package, called "RodCellJ", allowed us to analyze a large number of S. pombe cells to understand the rules that govern SIN protein asymmetry. CONCLUSIONS: "RodCell" is freely available to the community as a package of several ImageJ plugins to simultaneously analyze the behavior of a large number of rod-shaped cells in an extensive manner. The integration of different image-processing techniques in a single package, as well as the development of novel algorithms does not only allow to speed up the analysis with respect to the usage of existing tools, but also accounts for higher accuracy. Its utility was demonstrated on both 2D and 3D static and dynamic images to study the septation initiation network of the yeast Schizosaccharomyces pombe. More generally, it can be used in any kind of biological context where fluorescent-protein labeled structures need to be analyzed in rod-shaped cells. AVAILABILITY: RodCellJ is freely available under http://bigwww.epfl.ch/algorithms.html, (after acceptance of the publication)
An Extended, Boolean Model of the Septation Initiation Network in S.Pombe Provides Insights into Its Regulation.
Cytokinesis in fission yeast is controlled by the Septation Initiation Network (SIN), a protein kinase signaling network using the spindle pole body as scaffold. In order to describe the qualitative behavior of the system and predict unknown mutant behaviors we decided to adopt a Boolean modeling approach. In this paper, we report the construction of an extended, Boolean model of the SIN, comprising most SIN components and regulators as individual, experimentally testable nodes. The model uses CDK activity levels as control nodes for the simulation of SIN related events in different stages of the cell cycle. The model was optimized using single knock-out experiments of known phenotypic effect as a training set, and was able to correctly predict a double knock-out test set. Moreover, the model has made in silico predictions that have been validated in vivo, providing new insights into the regulation and hierarchical organization of the SIN
Establishment of computational biology in Greece and Cyprus: Past, present, and future.
We review the establishment of computational biology in Greece and Cyprus from its inception to date and issue recommendations for future development. We compare output to other countries of similar geography, economy, and size—based on publication counts recorded in the literature—and predict future growth based on those counts as well as national priority areas. Our analysis may be pertinent to wider national or regional communities with challenges and opportunities emerging from the rapid expansion of the field and related industries. Our recommendations suggest a 2-fold growth margin for the 2 countries, as a realistic expectation for further expansion of the field and the development of a credible roadmap of national priorities, both in terms of research and infrastructure funding
Best practices for the manual curation of Intrinsically Disordered Proteins in DisProt
The DisProt database is a significant resource containing manually curated
data on experimentally validated intrinsically disordered proteins (IDPs) and
regions (IDRs) from the literature. Developed in 2005, its primary goal was to
collect structural and functional information into proteins that lack a fixed
three-dimensional (3D) structure. Today, DisProt has evolved into a major
repository that not only collects experimental data but also contributes
significantly to our understanding of the IDPs/IDRs roles in various biological
processes, such as autophagy or the life cycle mechanisms in viruses, or their
involvement in diseases (such as cancer and neurodevelopmental disorders).
DisProt offers detailed information on the structural states of IDPs/IDRs,
including state transitions, interactions, and their functions, all provided as
curated annotations. One of the central activities of DisProt is the meticulous
curation of experimental data from the literature. For this reason, to ensure
that every expert and volunteer curator possesses the requisite knowledge for
data evaluation, collection, and integration, training courses and curation
materials are available. However, biocuration guidelines concur on the
importance of developing robust guidelines that not only provide critical
information about data consistency but also ensure data acquisition.This
guideline aims to provide both biocurators and external users with best
practices for manually curating IDPs and IDRs in DisProt. It describes every
step of the literature curation process and provides use cases of IDP curation
within DisProt.
Database URL: https://disprot.org
Analysis of S. pombe SIN protein association to the SPB reveals two genetically separable states of the SIN.
The Schizosaccharomyces pombe septation initiation network (SIN) regulates cytokinesis, and asymmetric association of SIN proteins with the mitotic spindle pole bodies (SPBs) is important for its regulation. Here, we have used semi-automated image analysis to study SIN proteins in large numbers of wild-type and mutant cells. Our principal conclusions are: first, that the association of Cdc7p with the SPBs in early mitosis is frequently asymmetric, with a bias in favour of the new SPB; second, that the early association of Cdc7p-GFP to the SPB depends on Plo1p but not Spg1p, and is unaffected by mutations that influence its asymmetry in anaphase; third, that Cdc7p asymmetry in anaphase B is delayed by Pom1p and by activation of the spindle assembly checkpoint, and is promoted by Rad24p; and fourth, that the length of the spindle, expressed as a fraction of the length of the cell, at which Cdc7p becomes asymmetric is similar in cells dividing at different sizes. These data reveal that multiple regulatory mechanisms control the SIN in mitosis and lead us to propose a two-state model to describe the SIN
Disease association and comparative genomics of compositional bias in human proteins [version 2; peer review: 2 approved]
Background: The evolutionary rate of disordered protein regions varies greatly due to the lack of structural constraints. So far, few studies have investigated the presence/absence patterns of compositional bias, indicative of disorder, across phylogenies in conjunction with human disease. In this study, we report a genome-wide analysis of compositional bias association with disease in human proteins and their taxonomic distribution. Methods: The human genome protein set provided by the Ensembl database was annotated and analysed with respect to both disease associations and the detection of compositional bias. The Uniprot Reference Proteome dataset, containing 11297 proteomes was used as target dataset for the comparative genomics of a well-defined subset of the Human Genome, including 100 characteristic, compositionally biased proteins, some linked to disease. Results: Cross-evaluation of compositional bias and disease-association in the human genome reveals a significant bias towards biased regions in disease-associated genes, with charged, hydrophilic amino acids appearing as over-represented. The phylogenetic profiling of 17 disease-associated, proteins with compositional bias across 11297 proteomes captures characteristic taxonomic distribution patterns. Conclusions: This is the first time that a combined genome-wide analysis of compositional bias, disease-association and taxonomic distribution of human proteins is reported, covering structural, functional, and evolutionary properties. The reported framework can form the basis for large-scale, follow-up projects, encompassing the entire human genome and all known gene-disease associations
- …