2 research outputs found

    Complicating the debate: Evaluating the potential of gas-chromatography-mass spectrometry for differentiating prehistoric aceramic tar production techniques

    No full text
    Birch bark tar was used extensively throughout human history. While later ceramic-based production technologies are known, prehistoric aceramic techniques leave little to no archaeological evidence. Experimental tar production attempts to fill this gap and suggest potential techniques. However, their archaeological relevance is unclear. Through an in-depth biomolecular analysis using Gas Chromatography-Mass Spectrometry, this study attempts to differentiate tars produced using four experimental aceramic techniques: condensation, ash mound, pit roll, and raised structure. In doing so we publish the largest collection of GC-MS results of aceramic birch tars. The results show that pentacyclic triterpenoids, characteristic of birch bark, vary between the production techniques in relation to heating exposure and perhaps the tar collection method. This allows for a tentative identification of tars produced through the condensation and ash mound techniques, which were formed consistently using short periods of heating and collected systematically by scraping. In contrast, tars produced using the pit roll and raised structure techniques do not have consistent molecular signatures. Despite the partial success of Gas Chromatography-Mass Spectrometry, the archaeological relevance is questioned because this technique is only applicable to samples from optimum lipid preservation conditions when a high number of pentacyclic triterpenoids are preserved. Therefore, using Gas Chromatography-Mass Spectrometry to determine the transformation methods of organics, like birch bark, may not be an appropriate standalone technique to fairly discuss the technological capabilities of past populations.Team Joris DikChemE/O&O groe

    A multi-analytical approach reveals flexible compound adhesive technology at Steenbokfontein Cave, Western Cape

    No full text
    Evidence of different compound resin-based adhesives is present in South Africa from at least 77000 years ago. Ancient glue production is considered one of the oldest known highly complex technologies, requiring advanced technological and mental abilities. However, our current knowledge of adhesive materials, recipes, and uses in South Africa is limited by the lack of in-depth analysis and molecular characterization of residues. To deepen our knowledge of past adhesive technology, we performed a detailed multi-analytical analysis (use-wear, XRD, μ-CT, IR spectroscopy, GC-MS) of 30 Later Stone Age tools with adhesive remains from Steenbokfontein Cave, South Africa. At the site, tools made of various rocks were hafted with compound adhesives, and we identified three recipes: 1) resin/tar of Widdringtonia or Podocarpus species combined with hematite; 2) resin/tar of Widdringtonia or Podocarpus species mixed with hematite and another plant exudate; 3) resin/tar without hematite. The studied scrapers were used in hide-working activities, and the studied cutting tools were used to work animal and soft plant matters. All scrapers display evidence of intense resharpening and were discarded when no longer useable. The combination of different methods for residue analysis reveals the flexibility of adhesive technology at Steenbokfontein. Despite the consistent use of conifer resin/tar throughout the sequence, we observed that other ingredients were added or excluded independently of the tools’ raw materials and functions. Our results highlight the long-lasting tradition of using adhesive material from conifer species but also the adaptability and flexibility of adhesive traditions. The systematic application of this multi-analytical approach to Pleistocene adhesives will be useful to better characterise adhesive traditions and enhance the debate on the technological, cognitive, and behavioural implications of this technology.Team Joris DikGeo-engineeringTeam Amarante Bottge
    corecore