2 research outputs found

    Maize as Energy Crop

    Get PDF
    Maize is the predominant raw material (together with sugar cane) for the production of bioethanol, the most common and widespread biofuel, and at the same time the predominant raw material for biogas production, with the highest yields in Europe. The advantage of maize biomass over other energy plants is the fact that biomass occurs after harvesting the seed and does not require the use of a different area for its development. The main drawback of the use of maize biomass is the negative effects of removing crop residues on fertility and the physical properties of the soil. Bioethanol’s share of global biofuel production is over 94%, as many countries are replacing a portion of their fossil fuels with biofuels, according to international regulations. The choice of crops used as feedstock for the production of bioethanol is strongly associated with local climatic factors. About 60% of world bioethanol production is made with cane raw material in the Central and South American countries, with Brazil leading, while the remaining 40% from other crops with North America producing bioethanol almost exclusively from maize, and the EU uses as raw material raw starch (cereals and maize) as well as crops such as sugar beet and sweet sorghum

    Effect of Different Tillage Practices on Sunflower (<i>Helianthus annuus</i>) Cultivation in a Crop Rotation System with Intercropping <i>Triticosecale</i>-<i>Pisum sativum</i>

    No full text
    The objective of this work was to investigate the effect of different soil tillage practices on sunflower cultivation in a rotation system with intercropping of Triticosecale-Pisum sativum. For this purpose, a two-year experimental field with a 5% slope was established in central Greece. There were four treatments with three replications each. The treatments were as follows: (a) no tillage planting parallel to the contour (NTC-PAC), (b) conventional tillage planting parallel to the contour (CTC-PAC), (c) no tillage planting perpendicular to the contour (NTC-PEC), and (d) conventional tillage planting perpendicular to the contour (CTC-PEC). During the experiment, the plant height, leaf area index, specific leaf area, plants’ total nitrogen, and plants’ proteins were measured. According to the results, the plant height ranged from 64.9 (CTC-PAC) to 85.2 cm (NTC-PEC) for the first year and between 66.5–86.5 cm in for the CTC-PAC and NTC-PEC treatments in the second year. Furthermore, the leaf area index (LAI) and specific leaf area (SLA), plants’ total nitrogen and protein content and N-uptake were affected positively by the no tillage practice. To conclude, sunflower is a promising crop in a rotation system intercropping Triticosecale-Pisum sativum, cultivated under rainfed sloping conditions
    corecore