10 research outputs found

    In vitro bioactivity and stem cells attachment of three-dimensionally ordered macroporous bioactive glass incorporating iron oxides

    Get PDF
    Three-dimensionally ordered macroporous bioactive SiO2-CaO-Na2O-P2O5 glass (3DOM-BG) is synthesized by using the sol-gel method. After an in vitro test in simulated body fluid (SBF), the hydroxyapatite (HAp) crystalline phase is clearly formed on its surface as confirmed by X-ray diffractometry (XRD) and Raman spectroscopy. Magnetic 3DOM-BG/Fe samples are synthesized by partial substitution of SiO2 with iron oxide. Whilst the HAp layer is not confirmed, energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR) and XRD analysis reveal calcium phosphate layer on the surface of 3DOM-BG/Fe samples after the SBF soaking. The growth of HAp-like layer is slower with increasing iron oxides. The initial mechanism that thought to induce bone formation is reduced due to the replacement of Ca2+ with Fe ions in the glass network. The formation of HAp-like layer is modified by the sedimentation of Ca and P while the nonmagnetic 3DOM-BG forms the calcium phosphate by the ionic exchange following the Hench mechanism. The adult human adipose tissue-derived stem cells (hADSCs) can be closely attached and well spread on the flat-plate of all 3DOM-BG/Fe and 3DOM-BG. Without detectable cytotoxicity possibly induced by iron oxides, the osteoblast can be grown and proliferated. In addition to these bioactivity and biocompatibility, porous structures can allow their possible use in targeted drug delivery and magnetic properties of 3DOM-BG/Fe can essentially be implemented in hyperthermia therapy

    Enhanced Coercivity of Low-Density Barium Hexaferrite Magnets from Paste-Injection Molding

    No full text
    Ceramic–polymer paste-injection molding is demonstrated as a facile fabrication route for barium hexaferrite magnets. Interestingly, these low-density (1.90–2.35 g/cm3) magnets exhibit substantial coercivity of 3868–4002 Oe. When ceramic paste without polymeric additives is used, reduced coercivity and slightly increased magnetizations are obtained from a magnet with the density of 2.55 g/cm3. Their magnetizations are also higher than those obtained from compactions of sol–gel-derived powders. For compact magnets (3.46–3.77 g/cm3), the DI water addition results in a slightly higher magnetization but lower coercivity than dry-pressed magnets. Compactions into disk and bar magnets give rise to comparable magnetic properties. The morphological characterizations reveal smaller barium hexaferrite particles leading to larger coercivity, and the density and shape of magnets have a less pronounced effect

    Paste-Injection of Low-Density Barium Hexaferrite Magnets with Soft Magnetic Iron Phase

    No full text
    Permanent magnets of varying shapes and sizes are increasingly produced. For hexaferrite magnets, it is challenging to incorporate polymers and a soft magnetic phase in the form of paste before injection molding or extrusion free-forming. In this study, hard magnetic barium hexaferrite/soft magnetic iron composites with a density of 2.28–2.34 g/cm3 are obtained after paste-injection molding and subsequent sintering at 1150 °C for 5 h. Variations of the binder (143.5–287.0 mg poly(vinyl alcohol), PVA) and the plasticizer (75–150 mg poly(ethylene glycol), PEG-400) in the ceramic–polymer paste give rise to comparable remanent magnetization (33.10–33.63 emu/g) and coercivity (3854–3857 Oe). Unlike all-ferrite systems, the presence of a soft magnetic metal phase is not detrimental to the coercivity. However, the remanent and saturation magnetizations are not substantially increased. The addition of 1% and 5% of iron oxide in the ceramic–polymer paste gives rise to hard/soft composites with lower densities of 2.11 and 2.14 g/cm3. The coercivity is increased to 3942–3945 Oe; however, the maximum energy product is reduced

    Paste-Injection of Low-Density Barium Hexaferrite Magnets with Soft Magnetic Iron Phase

    No full text
    Permanent magnets of varying shapes and sizes are increasingly produced. For hexaferrite magnets, it is challenging to incorporate polymers and a soft magnetic phase in the form of paste before injection molding or extrusion free-forming. In this study, hard magnetic barium hexaferrite/soft magnetic iron composites with a density of 2.28–2.34 g/cm3 are obtained after paste-injection molding and subsequent sintering at 1150 °C for 5 h. Variations of the binder (143.5–287.0 mg poly(vinyl alcohol), PVA) and the plasticizer (75–150 mg poly(ethylene glycol), PEG-400) in the ceramic–polymer paste give rise to comparable remanent magnetization (33.10–33.63 emu/g) and coercivity (3854–3857 Oe). Unlike all-ferrite systems, the presence of a soft magnetic metal phase is not detrimental to the coercivity. However, the remanent and saturation magnetizations are not substantially increased. The addition of 1% and 5% of iron oxide in the ceramic–polymer paste gives rise to hard/soft composites with lower densities of 2.11 and 2.14 g/cm3. The coercivity is increased to 3942–3945 Oe; however, the maximum energy product is reduced

    Effect of Sol-Gel Ageing Time on Three Dimensionally Ordered Macroporous Structure of 80SiO2-15CaO-5P2O5 Bioactive Glasses

    No full text
    <p>Three dimensionally ordered macroporous bioactive glasses (3DOM-BGs), namely 80SiO<sub>2</sub>-15CaO-5P<sub>2</sub>O<sub>5</sub>, were synthesized by sol-gel method. PMMA colloidal crystals and non-ionic block copolymers P123 were used as cotemplates. The amorphous 3DOM-BGs had skeletal walls enclosing macropores. Such structure resulted from octahedral and tetrahedral holes of the face-centered cubic (<em>fcc</em>) closest packed PMMA templates and windows interconnecting through macropores network. The thicknesses of the walls were around 50 nm<sub> </sub>–<sub> </sub>80 nm and the windows were 90 nm<sub> </sub>–<sub> </sub>110 nm in diameter. These wall thickness is increased by with an increase in ageing time up to 24 h and  then gradually reduced with further increase in aging time.<strong> </strong>Vibration bands of Si–O–Si and P–O were evident in infrared spectra which are in agreement with EDS spectra indicating Si, P and Ca compositions. After <em>in vitro</em> bioactivity testing by soaking 3DOM-BGs in simulated body fluid at 37<sub> </sub>°C, the crystallization of amorphous calcium phosphate layers compatible to the bone component of hydroxyl carbonate apatite were rapidly formed within 3 h. These results indicated that these 3DOM-BGs resembled ideal bone implant materials.</p><p>DOI: <a href="http://dx.doi.org/10.5755/j01.ms.20.1.4755">http://dx.doi.org/10.5755/j01.ms.20.1.4755</a></p

    Loading Effect of Sol-Gel Derived Barium Hexaferrite on Magnetic Polymer Composites

    No full text
    Solution–processing methods were investigated as viable alternatives to produce the polymer-bonded barium hexaferrite (BaM). BaM powders were first synthesized by using the sol-gel auto-combustion method. While the ignition period in two synthesis batches varied, the morphology of hexagonal microplates and nanorods, as well as magnetic properties, were reproduced. To prepare magnetic polymer composites, these BaM powders were then incorporated into the acrylonitrile-butadiene-styrene (ABS) matrix with a weight ratio of 80:20, 70:30, and 60:40 by using the solution casting method. Magnetizations were linearly decreased with a reduction in ferrite loading. Compared to the BaM loose powders and pressed pellet, both remanent and saturation magnetizations were lower and gave rise to comparable values of the squareness. The squareness around 0.5 of BaM samples and their composites revealed the isotropic alignment. Interestingly, the coercivity was significantly increased from 1727–1776 Oe in loose BaM powders to 1874–2052 Oe for the BaM-ABS composites. These composites have potential to be implemented in the additive manufacturing of rare-earth-free magnets

    Synchrotron X-ray Absorption and In Vitro Bioactivity of Magnetic Macro/Mesoporous Bioactive Glasses

    Get PDF
    Iron oxides in macro/mesoporous bioactive glasses were characterized by synchrotron X-ray absorption near edge structure (XANES) spectroscopy. This magnetic phase was introduced by adding Fe(NO3)3 9H2O during the sol-gel synthesis. The obtained bioactive glass scaffolds exhibited superparamagnetism, in which the magnetization was increased with the increase in the Fe molar ratio from 10 to 20%. The linear combination fits of the XANES spectra indicated that the increase in the Fe molar ratio to 20% enhanced the γ-Fe2O3 formation at the expense of the α- Fe2O3 phase. This variation also promoted the formation of fine-grained bone-like apatites on the surface of the scaffolds in the in vitro test. The apatite growth between three and seven days was confirmed by the changing elemental compositions. However, the highest magnetic proportion led to the distortion of the skeleton walls and the collapse of the porous networks

    Effects of Carbon Doping and Annealing Temperature on Magnetic MnAl Powders and MnAl Polymeric Composites

    No full text
    Process parameters leading to magnetic polymer composites, an essential ingredient in the additive manufacturing of rare-earth-free magnets, are investigated. The induction melting of manganese (Mn) and aluminum (Al), and subsequent annealing at 450, 500, or 550 °C for 20 min, gave rise to ferromagnetic τ–MnAl phase, as well as other phases. The nonmagnetic Al4C3 and oxide phases were then removed by the magnetic separation. Magnetic powders from the magnetic separation were incorporated in polylactic acid (PLA) matrix via a solution route. The remanent magnetization as high as 4.3 emu/g in the powder form was reduced to 2.3–2.6 emu/g in the composites. The reduction in coercivity was minimal, and the largest value of 814 Oe was obtained when the powder annealed at 450 °C was loaded in the composite. The phase composition and hence magnetic properties were even more sensitive to the carbon (C) doping. Interestingly, the addition of 3% C led to coercivity as high as 1445 Oe in MnAl–C powders without further annealing. The enhanced coercivity was attributed to the domain wall pinning by the AlMn3C phase, and magnetizations are likely increased by this phase
    corecore