797 research outputs found

    Measuring efficiency in high-accuracy, broad-coverage statistical parsing

    Full text link
    Very little attention has been paid to the comparison of efficiency between high accuracy statistical parsers. This paper proposes one machine-independent metric that is general enough to allow comparisons across very different parsing architectures. This metric, which we call ``events considered'', measures the number of ``events'', however they are defined for a particular parser, for which a probability must be calculated, in order to find the parse. It is applicable to single-pass or multi-stage parsers. We discuss the advantages of the metric, and demonstrate its usefulness by using it to compare two parsers which differ in several fundamental ways.Comment: 8 pages, 4 figures, 2 table

    Edge-Based Best-First Chart Parsing

    Get PDF
    Best-first probabilistic chart parsing attempts to parse efficiently by working on edges that are judged 'best' by some probabilistic figure of merit (FOM). Recent work has used proba- bilistic context-free grammars (PCFGs) to sign probabilities to constituents, and to use these probabilities as the starting point for the FOM. This paper extends this approach to us- ing a probabilistic FOM to judge edges (incomplete constituents), thereby giving a much finergrained control over parsing effort. We show how this can be accomplished in a particularly simple way using the common idea of binarizing the PCFG. The results obtained are about a factor of twenty improvement over the best prior results -- that is, our parser achieves equivalent results using one twentieth the number of edges. Furthermore we show that this improvement is obtained with parsing precision and recall levels superior to those achieved by exhaustive parsing

    A fine grained heuristic to capture web navigation patterns

    Get PDF
    In previous work we have proposed a statistical model to capture the user behaviour when browsing the web. The user navigation information obtained from web logs is modelled as a hypertext probabilistic grammar (HPG) which is within the class of regular probabilistic grammars. The set of highest probability strings generated by the grammar corresponds to the user preferred navigation trails. We have previously conducted experiments with a Breadth-First Search algorithm (BFS) to perform the exhaustive computation of all the strings with probability above a specified cut-point, which we call the rules. Although the algorithm’s running time varies linearly with the number of grammar states, it has the drawbacks of returning a large number of rules when the cut-point is small and a small set of very short rules when the cut-point is high. In this work, we present a new heuristic that implements an iterative deepening search wherein the set of rules is incrementally augmented by first exploring trails with high probability. A stopping parameter is provided which measures the distance between the current rule-set and its corresponding maximal set obtained by the BFS algorithm. When the stopping parameter takes the value zero the heuristic corresponds to the BFS algorithm and as the parameter takes values closer to one the number of rules obtained decreases accordingly. Experiments were conducted with both real and synthetic data and the results show that for a given cut-point the number of rules induced increases smoothly with the decrease of the stopping criterion. Therefore, by setting the value of the stopping criterion the analyst can determine the number and quality of rules to be induced; the quality of a rule is measured by both its length and probability
    • …
    corecore