71 research outputs found

    Power-law persistence and trends in the atmosphere: A detailed study of long temperature records

    Full text link
    We use several variants of the detrended fluctuation analysis to study the appearance of long-term persistence in temperature records, obtained at 95 stations all over the globe. Our results basically confirm earlier studies. We find that the persistence, characterized by the correlation C(s) of temperature variations separated by s days, decays for large s as a power law, C(s) ~ s^(-gamma). For continental stations, including stations along the coastlines, we find that gamma is always close to 0.7. For stations on islands, we find that gamma ranges between 0.3 and 0.7, with a maximum at gamma = 0.4. This is consistent with earlier studies of the persistence in sea surface temperature records where gamma is close to 0.4. In all cases, the exponent gamma does not depend on the distance of the stations to the continental coastlines. By varying the degree of detrending in the fluctuation analysis we obtain also information about trends in the temperature records.Comment: 5 pages, 4 including eps figure

    Using the past to constrain the future: how the palaeorecord can improve estimates of global warming

    Full text link
    Climate sensitivity is defined as the change in global mean equilibrium temperature after a doubling of atmospheric CO2 concentration and provides a simple measure of global warming. An early estimate of climate sensitivity, 1.5-4.5{\deg}C, has changed little subsequently, including the latest assessment by the Intergovernmental Panel on Climate Change. The persistence of such large uncertainties in this simple measure casts doubt on our understanding of the mechanisms of climate change and our ability to predict the response of the climate system to future perturbations. This has motivated continued attempts to constrain the range with climate data, alone or in conjunction with models. The majority of studies use data from the instrumental period (post-1850) but recent work has made use of information about the large climate changes experienced in the geological past. In this review, we first outline approaches that estimate climate sensitivity using instrumental climate observations and then summarise attempts to use the record of climate change on geological timescales. We examine the limitations of these studies and suggest ways in which the power of the palaeoclimate record could be better used to reduce uncertainties in our predictions of climate sensitivity.Comment: The final, definitive version of this paper has been published in Progress in Physical Geography, 31(5), 2007 by SAGE Publications Ltd, All rights reserved. \c{opyright} 2007 Edwards, Crucifix and Harriso

    Saturn Atmospheric Structure and Dynamics

    Full text link
    2 Saturn inhabits a dynamical regime of rapidly rotating, internally heated atmospheres similar to Jupiter. Zonal winds have remained fairly steady since the time of Voyager except in the equatorial zone and slightly stronger winds occur at deeper levels. Eddies supply energy to the jets at a rate somewhat less than on Jupiter and mix potential vorticity near westward jets. Convective clouds exist preferentially in cyclonic shear regions as on Jupiter but also near jets, including major outbreaks near 35°S associated with Saturn electrostatic discharges, and in sporadic giant equatorial storms perhaps generated from frequent events at depth. The implied meridional circulation at and below the visible cloud tops consists of upwelling (downwelling) at cyclonic (anti-cyclonic) shear latitudes. Thermal winds decay upward above the clouds, implying a reversal of the circulation there. Warm-core vortices with associated cyclonic circulations exist at both poles, including surrounding thick high clouds at the south pole. Disequilibrium gas concentrations in the tropical upper troposphere imply rising motion there. The radiative-convective boundary and tropopause occur at higher pressure in the southern (summer) hemisphere due to greater penetration of solar heating there. A temperature “knee ” of warm air below the tropopause, perhaps due to haze heating, is stronger in the summer hemisphere as well. Saturn’s south polar stratosphere is warmer than predicted by radiative models and enhanced in ethane, suggesting subsidence-driven adiabatic warming there. Recent modeling advances suggest that shallow weather laye

    Nonlinear rossby waves forced by topography

    No full text
    • …
    corecore