17 research outputs found

    Molecular constituents of the extracellular matrix in rat liver mounting a hepatic progenitor cell response for tissue repair

    Get PDF
    BACKGROUND: Tissue repair in the adult mammalian liver occurs in two distinct processes, referred to as the first and second tiers of defense. We undertook to characterize the changes in molecular constituents of the extracellular matrix when hepatic progenitor cells (HPCs) respond in a second tier of defense to liver injury. RESULTS: We used transcriptional profiling on rat livers responding by a first tier (surgical removal of 70% of the liver mass (PHx protocol)) and a second tier (70% hepatectomy combined with exposure to 2-acetylaminofluorene (AAF/PHx protocol)) of defense to liver injury and compared the transcriptional signatures in untreated rat liver (control) with those from livers of day 1, day 5 and day 9 post hepatectomy in both protocols. Numerous transcripts encoding specific subunits of collagens, laminins, integrins, and various other extracellular matrix structural components were differentially up- or down-modulated (P < 0.01). The levels of a number of transcripts were significantly up-modulated, mainly in the second tier of defense (Agrn, Bgn, Fbn1, Col4a1, Col8a1, Col9a3, Lama5, Lamb1, Lamb2, Itga4, Igtb2, Itgb4, Itgb6, Nid2), and their signal intensities showed a strong or very strong correlation with Krt1-19, a well-established marker of a ductular/HPC reaction. Furthermore, a significant up-modulation and very strong correlation between the transcriptional profiles of Krt1-19 and St14 encoding matriptase, a component of a novel protease system, was found in the second tier of defense. Real-time PCR confirmed the modulation of St14 transcript levels and strong correlation to Krt-19 and also showed a significant up-modulation and strong correlation to Spint1 encoding HAI-1, a cognate inhibitor of matriptase. Immunodetection and three-dimensional reconstructions showed that laminin, Collagen1a1, agrin and nidogen1 surrounded bile ducts, proliferating cholangiocytes, and HPCs in ductular reactions regardless of the nature of defense. Similarly, matriptase and HAI-1 were expressed in cholangiocytes regardless of the tier of defense, but in the second tier of defense, a subpopulation of HPCs in ductular reactions co-expressed HAI-1 and the fetal hepatocyte marker Dlk1. CONCLUSION: Transcriptional profiling and immunodetection, including three-dimensional reconstruction, generated a detailed overview of the extracellular matrix constituents expressed in a second tier of defense to liver injury

    Do Neonatal Mouse Hearts Regenerate following Heart Apex Resection?

    Get PDF
    The mammalian heart has generally been considered nonregenerative, but recent progress suggests that neonatal mouse hearts have a genuine capacity to regenerate following apex resection (AR). However, in this study, we performed AR or sham surgery on 400 neonatal mice from inbred and outbred strains and found no evidence of complete regeneration. Ideally, new functional cardiomyocytes, endothelial cells, and vascular smooth muscle cells should be formed in the necrotic area of the damaged heart. Here, damaged hearts were 9.8% shorter and weighed 14% less than sham controls. In addition, the resection border contained a massive fibrotic scar mainly composed of nonmyocytes and collagen disposition. Furthermore, there was a substantial reduction in the number of proliferating cardiomyocytes in AR hearts. Our results thus question the usefulness of the AR model for identifying molecular mechanisms underlying regeneration of the adult heart after damage

    Transgenic Overexpression of ADAM12 Suppresses Muscle Regeneration and Aggravates Dystrophy in Aged mdx Mice

    No full text
    Muscular dystrophies are characterized by insufficient restoration and gradual replacement of the skeletal muscle by fat and connective tissue. ADAM12 has previously been shown to alleviate the pathology of young dystrophin-deficient mdx mice, a model for Duchenne muscular dystrophy. The observed effect of ADAM12 was suggested to be mediated via a membrane-stabilizing up-regulation of utrophin, α7B integrin, and dystroglycans. Ectopic ADAM12 expression in normal mouse skeletal muscle also improved regeneration after freeze injury, presumably by the same mechanism. Hence, it was suggested that ADAM12 could be a candidate for nonreplacement gene therapy of Duchenne muscular dystrophy. We therefore evaluated the long-term effect of ADAM12 overexpression in muscle. Surprisingly, we observed loss of skeletal muscle and accelerated fibrosis and adipogenesis in 1-year-old mdx mice transgenically overexpressing ADAM12 (ADAM12+/mdx mice), even though their utrophin levels were mildly elevated compared with age-matched controls. Thus, membrane stabilization was not sufficient to provide protection during prolonged disease. Consequently, we reinvestigated skeletal muscle regeneration in ADAM12 transgenic mice (ADAM12+) after a knife cut lesion and observed that the regeneration process was significantly impaired. ADAM12 seemed to inhibit the satellite cell response and delay myoblast differentiation. These results discourage long-term therapeutic use of ADAM12. They also point to impaired regeneration as a possible factor in development of muscular dystrophy

    Expression and Functional Analyses of Dlk1 in Muscle Stem Cells and Mesenchymal Progenitors during Muscle Regeneration

    No full text
    Delta like non-canonical Notch ligand 1 (Dlk1) is a paternally expressed gene which is also known as preadipocyte factor 1 (Pref&minus;1). The accumulation of adipocytes and expression of Dlk1 in regenerating muscle suggests a correlation between fat accumulation and Dlk1 expression in the muscle. Additionally, mice overexpressing Dlk1 show increased muscle weight, while Dlk1-null mice exhibit decreased body weight and muscle mass, indicating that Dlk1 is a critical factor in regulating skeletal muscle mass during development. The muscle regeneration process shares some features with muscle development. However, the role of Dlk1 in regeneration processes remains controversial. Here, we show that mesenchymal progenitors also known as adipocyte progenitors exclusively express Dlk1 during muscle regeneration. Eliminating developmental effects, we used conditional depletion models to examine the specific roles of Dlk1 in muscle stem cells or mesenchymal progenitors. Unexpectedly, deletion of Dlk1 in neither the muscle stem cells nor the mesenchymal progenitors affected the regenerative ability of skeletal muscle. In addition, fat accumulation was not increased by the loss of Dlk1. Collectively, Dlk1 plays essential roles in muscle development, but does not greatly impact regeneration processes and adipogenic differentiation in adult skeletal muscle regeneration

    Transit-Amplifying Ductular (Oval) Cells and Their Hepatocytic Progeny Are Characterized by a Novel and Distinctive Expression of Delta-Like Protein/Preadipocyte Factor 1/Fetal Antigen 1

    No full text
    Hepatic regeneration from toxic or surgical injury to the adult mammalian liver, endorses different cellular responses within the hepatic lineage. The molecular mechanisms determining commitment of a cell population at a specific lineage level to participate in liver repair as well as the fate of its progeny in the hostile environment created by the injury are not well defined. Based on the role of the Notch/Delta/Jagged system in cell fate specification and recent reports linking Notch signaling with normal bile duct formation in mouse and human liver, we examined the expression of Notch1, Notch2, Notch3, Delta1, Delta3, Jagged1, and Jagged2, and delta-like protein/preadipocyte factor 1/fetal antigen 1 (dlk) in four well-defined experimental rat models of liver injury and regeneration. Although Delta3 and Jagged2 were undetectable by reverse transcriptase-polymerase chain reaction and Northern blot, we observed the most significant up-regulation of all other transcripts in the 2-acetylaminofluorene-70% hepatectomy (AAF/PHx) model, in which liver mass is restored by proliferation and differentiation of transit-amplifying ductular (oval) cells. The most profound change was observed for dlk. Accordingly, immunohistochemical analyses in the AAF/PHx model showed a specific expression of dlk in atypical ductular structures composed of oval cells. Delta-like protein was not observed in proliferating hepatocytes or bile duct cells after partial hepatectomy or ligation of the common bile duct whereas clusters of dlk immunoreactive oval cells were found in both the retrorsine and the AAF/PHx models. Finally, we used dlk to isolate α-fetoprotein-positive cells from fetal and adult regenerating rat liver by a novel antibody panning technique
    corecore