3 research outputs found

    Redefining Global Food Security: Do we really have a Global Food Crisis?

    Get PDF
    With the Climate change effects becoming more and more undoubted in the world populations, the reality of food production trends taking a negative curve is clear. This bring up the questions of whether the farmers will be able to produce food for the sustenance of the world population or not? The rate of developing food shortage coping mechanisms in this regard is slower that the ravaging negative climate change effects of drought and floods on farm performance. This commentary has the aim of requesting a fresh discussion around the fundamentals of what is food, what is a food security and what is nutritional security? It is possible that the humanity has a perception that needs refocusing. This is a perception that some people may choose out of non-food safety issues not to eat certain foods while other however healthily eat such food. It therefore becomes hard to technically accept that food is in short supply for those the opt not to eat that which is edible

    Isolation and Characterization of Fungi Associated with Disease Symptoms on Ziziphus mucronata Leaves and Phaseolus vulgaris Pods in Windhoek, Namibia

    No full text
    Detection of phytopathogens that are involved in causing disease symptoms in plants and crops is of prime importance as a key step in disease treatment and management. Ziziphus mucronata is a species endemic in temperate and tropical climates and used traditionally in the treatment of infectious diseases. The common bean (Phaseolus vulgaris) is a rich source of nutrients for the human diet. Just like most crops, it is not immune to fungal diseases and reports had been received of P. vulgaris showing signs on disease. The aim of this study was to isolate and characterize the fungal species associated with the disease symptoms in the Z. mucronata and P. vulgaris. Fungal species where isolated from surface-sterilised symptomatic bark of Z. muconata and fresh green bean pods. These where grown on petri dishes containing Potato Dextrose Agar and incubated at room temperature. Pure cultures where then obtained by transferring small segments of fungal growth to a new petri dish that contained PDA. During DNA extraction the pure cultures where first homogenized using liquid nitrogen and then the rest of the extraction carried out as stipulated in the Zymo extraction kit. The Nanodrop was used for quantifying the DNA and amplification of the conserved Internal Transcribed Spacer (ITS) region of Ribosomal RNA genes was carried out using ITS1 and ITS2. The PCR products were sequenced at Inqaba Biotech Industries in South Africa. The obtained sequences were then compared by alignment with known sequences in the Genbank using Basic Local Alignment Search Tool (BLAST). The BLAST searches were able to reveal the fungi isolated from the Z. mucronata as Fusarium penzigii and Fusarium dimerum while the fungi isolated from P. vulgaris shown to be Phoma destructiva, with 100 %, 95% and 100% sequence similarity respectively. The next step in this work is carry out Koch‘s postulates to determine which of this fungi is the causal agent of the observed diseases symptoms in order to start a targeted diseases management programme

    Impact of antibiotics on gut microbiome composition and resistome in the first years of life in low- to middle-income countries: A systematic review.

    No full text
    BackgroundInappropriate antimicrobial usage is a key driver of antimicrobial resistance (AMR). Low- and middle-income countries (LMICs) are disproportionately burdened by AMR and young children are especially vulnerable to infections with AMR-bearing pathogens. The impact of antibiotics on the microbiome, selection, persistence, and horizontal spread of AMR genes is insufficiently characterized and understood in children in LMICs. This systematic review aims to collate and evaluate the available literature describing the impact of antibiotics on the infant gut microbiome and resistome in LMICs.Methods and findingsIn this systematic review, we searched the online databases MEDLINE (1946 to 28 January 2023), EMBASE (1947 to 28 January 2023), SCOPUS (1945 to 29 January 2023), WHO Global Index Medicus (searched up to 29 January 2023), and SciELO (searched up to 29 January 2023). A total of 4,369 articles were retrieved across the databases. Duplicates were removed resulting in 2,748 unique articles. Screening by title and abstract excluded 2,666 articles, 92 articles were assessed based on the full text, and 10 studies met the eligibility criteria that included human studies conducted in LMICs among children below the age of 2 that reported gut microbiome composition and/or resistome composition (AMR genes) following antibiotic usage. The included studies were all randomized control trials (RCTs) and were assessed for risk of bias using the Cochrane risk-of-bias for randomized studies tool. Overall, antibiotics reduced gut microbiome diversity and increased antibiotic-specific resistance gene abundance in antibiotic treatment groups as compared to the placebo. The most widely tested antibiotic was azithromycin that decreased the diversity of the gut microbiome and significantly increased macrolide resistance as early as 5 days posttreatment. A major limitation of this study was paucity of available studies that cover this subject area. Specifically, the range of antibiotics assessed did not include the most commonly used antibiotics in LMIC populations.ConclusionIn this study, we observed that antibiotics significantly reduce the diversity and alter the composition of the infant gut microbiome in LMICs, while concomitantly selecting for resistance genes whose persistence can last for months following treatment. Considerable heterogeneity in study methodology, timing and duration of sampling, and sequencing methodology in currently available research limit insights into antibiotic impacts on the microbiome and resistome in children in LMICs. More research is urgently needed to fill this gap in order to better understand whether antibiotic-driven reductions in microbiome diversity and selection of AMR genes place LMIC children at risk for adverse health outcomes, including infections with AMR-bearing pathogens
    corecore