70 research outputs found
Decision-Making and Sustainable Drainage: Design and Scale
Sustainable Drainage (SuDS) improves water quality, reduces runoff water quantity, increases amenity and biodiversity benefits, and can also mitigate and adapt to climate change. However, an optimal solution has to be designed to be fit for purpose. Most research concentrates on individual devices, but the focus of this paper is on a full management train, showing the scale-related decision-making process in its design with reference to the city of Coventry, a local government authority in central England. It illustrates this with a large scale site-specific model which identifies the SuDS devices suitable for the area and also at the smaller scale, in order to achieve greenfield runoff rates. A method to create a series of maps using geographical information is shown, to indicate feasible locations for SuDS devices across the local government authority area. Applying the larger scale maps, a management train was designed for a smaller-scale regeneration site using MicroDrainage® software to control runoff at greenfield rates. The generated maps were constructed to provide initial guidance to local government on suitable SuDS at individual sites in a planning area. At all scales, the decision about which device to select was complex and influenced by a range of factors, with slightly different problems encountered. There was overall agreement between large and small scale models
The impact of local microclimates and Urban Greening Factor on schools’ thermal conditions during summer:a study in Coventry, UK
Thermal comfort in schools affects children’s wellbeing and educational outcomes. Global warming and frequent heatwaves have worsened the overheating issue in schools, especially in Western European countries, like the UK. While previous studies have mainly focused on residential and commercial buildings, school-related research often emphasised indoor thermal conditions, neglecting the broader influence of microclimates on the overall thermal conditions. Therefore, this research explores the thermal conditions in schools, during the summer of 2023, with a specific focus on the impact of greenery and materials. Urban Greening Factor (UGF) and its relationship with indoor and outdoor air temperatures were explored for the first time.Field studies were conducted in four primary schools in Coventry, UK, measuring indoor air temperatures and micrometeorological parameters. Tree shade demonstrated a substantial cooling effect, reducing air temperature and mean radiant temperature by up to 6.4°C and 22.9°C, respectively. Considerable difference between measured air temperatures in sunlight and official meteorological records highlights the need for microclimatic studies in schools. Thermal imagery identified high surface temperatures on artificial grass (67°C) and asphalt (55°C). Urban Greening Factor showed a strong correlation with classroom temperatures but failed to account for spatial greenery distribution and subsequently outdoor thermal conditions. The study concludes that optimising tree shade and replacing dark and artificial materials, are necessary for effective heat mitigation, offering valuable insights for policymakers and urban planners to create thermally comfortable and sustainable school environments
Geochemical fingerprints and controls in the sediments of an urban river: River Manzanares, Madrid (Spain)
The geochemical fingerprint of sediment retrieved from the banks of the River Manzanares as it passes through the City of Madrid is presented here. The river collects the effluent water from several Waste Water Treatment (WWT) plants in and around the city, such that, at low flows, up to 60% of the flow has been treated. A total of 18 bank-sediment cores were collected along the course of the river, down to its confluence with the Jarama river, to the south–east of Madrid. Trace and major elements in each sample were extracted following a double protocol: (a) “Total” digestion with HNO3, HClO4 and HF; (b) “Weak” digestion with sodium acetate buffered to pH=5 with acetic acid, under constant stirring. The digests thus obtained were subsequently analysed by ICP-AES, except for Hg which was extracted with aqua regia and sodium chloride-hydroxylamine sulfate, and analysed by Cold Vapour-AAS. X-ray diffraction was additionally employed to determine the mineralogical composition of the samples. Uni- and multivariate analyses of the chemical data reveal the influence of Madrid on the geochemistry of Manzanares' sediments, clearly manifested by a marked increase in the concentration of typically “urban” elements Ag, Cr, Cu, Pb and Zn, downstream of the intersection of the river with the city's perimeter. The highest concentrations of these elements appear to be associated with illegal or accidental dumping of waste materials, and with the uncontrolled incorporation of untreated urban runoff to the river. The natural matrix of the sediment is characterised by fairly constant concentrations of Ce, La and Y, whereas changes in the lithology intersected by the river cause corresponding variations in Ca–Mg and Al–Na contents. In the final stretch of the river, the presence of carbonate materials seems to exert a strong geochemical control on the amount of Zn and, to a lesser extent, Cu immobilised in the sediments. This fact suggests that a variable but significant proportion of both elements may be susceptible to reincorporation in the aqueous phase under realistic environmental conditions
The Potential to Address Disease Vectors in Favelas in Brazil Using Sustainable Drainage Systems:Zika, Drainage and Greywater Management
Residents of informal settlements, the world over, suffer consequences due to the lack of drainage and greywater management, impacting human and environmental health. In Brazil, the presence of the Aedes aegypti mosquito in urban areas promotes infections of the Zika virus as well as companion viruses, such as dengue, chikungunya and yellow fever. By using observation and interviews with the community, this paper shows how a simple sustainable drainage system approach could prevent the accumulation of on-street standing water, and thus reduce opportunities for the mosquito to breed and reduce infection rates. During the interview phase, it became apparent that underlying misinformation and misunderstandings prevail related to existing environmental conditions in favelas and the role of the mosquito in infecting residents. This inhibits recommendations made by professionals to reduce breeding opportunities for the disease vector. Whilst unrest is an issue in favelas, it is not the only issue preventing the human right to reliable, safe sanitation, including drainage. In “pacified” favelas which may be considered safe(r), the infrastructure is still poor and is not connected to the city-wide sanitation/treatment networks
The relationship between soil geochemistry and the bioaccessibility of trace elements in playground soil
A total of 32 samples of surficial soil were collected from 16 playground areas in Madrid (Spain), in order to investigate the importance of the geochemistry of the soil on subsequent bioaccessibility of trace elements. The in vitro bioaccessibility of As, Co, Cr, Cu, Ni, Pb and Zn was evaluated by means of two extraction processes that simulate the gastric environment and one that reproduces a gastric + intestinal digestion sequence. The results of the in vitro bioaccessibility were compared against aqua regia extractions (“total” concentration), and it was found that total concentrations of As, Cu, Pb and Zn were double those of bioaccessible values, whilst that of Cr was ten times higher. Whereas the results of the gastric + intestinal extraction were affected by a high uncertainty, both gastric methods offered very similar and consistent results, with bioaccessibilities following the order: As = Cu = Pb = Zn > Co > Ni > Cr, and ranging from 63 to 7 %. Selected soil properties including pH, organic matter, Fe and CaCO3 content were determined to assess their influence on trace element bioaccessibility, and it was found that Cu, Pb and Zn were predominantly bound to organic matter and, to a lesser extent, Fe oxides. The former fraction was readily accessible in the gastric solution, whereas Fe oxides seemed to recapture negatively charged chloride complexes of these elements in the gastric solution, lowering their bioaccessibility. The homogeneous pH of the playground soils included in the study does not influence trace element bioaccessibility to any significant extent except for Cr, where the very low gastric accessibility seems to be related to the strongly pH-dependent formation of complexes with organic matter. The results for As, which have been previously described and discussed in detail in Mingot et al. (Chemosphere 84: 1386–1391, 2011), indicate a high gastric bioaccessibility for this element as a consequence of its strong association with calcium carbonate and the ease with which these bonds are broken in the gastric solution. The calculation of risk assessments are therefore dependant on the methodology used and the specific environment they address. This has impacts on management strategies formulated to ensure that the most vulnerable of society, children, can live and play without adverse consequences to their health
Unmanned surface vehicle for intelligent water quality assessment to promote sustainable human health
Deteriorating water quality poses significant health risks globally, with billions at risk of waterborne diseases due to contamination. Limited data on water quality heightens these risks as conventional monitoring methods lack comprehensive coverage. While technologies like Internet of Things and machine learning offer real-time monitoring capabilities, they often provide point data insufficient for assessing entire water bodies. Remote sensing, though useful, has limitations such as measuring only optical parameters and being affected by climate and resolution issues. To address these challenges, an unmanned surface vehicle named ‘AquaDrone’ has been developed. AquaDrone traverses water bodies, collecting data on four key parameters (pH, dissolved oxygen, electrical conductivity, and temperature) along with GPS coordinates. These data are transmitted to a web portal via LoRa communication and Wi-Fi, where visualizations like trendlines and color-coded heatmaps are generated. A multilayer perceptron classifies water quality into five categories, aiding in real-time assessment. The AquaDrone system offers a feasible solution for monitoring small to medium-sized water bodies, crucial for safeguarding public health
The effect of different biochar characteristics on soil nitrogen transformation processes : a review
For the last 30 years, interest has focused on biochar and its potential to store carbon in soil to mitigate climate change whilst improving soil properties for increased crop production and, therefore, could play a critical role in both agricultural sustainability and broader environmental aims. Biochar, a carbonaceous product, is formed from organic feedstock pyrolysised in the absence of air and, therefore, is a potential means of recycling organic waste. However, different feedstock and pyrolysis conditions result in a biochar with a range of altered characteristics. These characteristics influence nitrogen transformation processes in soil and result in the metabolism of different substrates and the formation of different products, which have different effects on agricultural yield. This paper reviews how the production of biochar, from varying feedstock and pyrolysis conditions, results in different biochar characteristics that influence each stage of the nitrogen cycle, namely processes involved in fixation, assimilation, mineralisation and denitrification. The nitrogen cycle is briefly outlined, providing a structure for the following discussion on influential biochar characteristics including carbon composition (whether recalcitrant or rapidly metabolisable), mineral composition, surface area, porosity, cation exchange capacity, inhibitory substances and pH and so on. Hence, after the addition of biochar to soil, microbial biomass and diversity, soil porosity, bulk density, water-holding capacity, cation exchange capacity, pH and other parameters change, but that change is subject to the type and amount of biochar. Hence, products from soil-based nitrogen transformation processes, which may be beneficial for plant growth, are highly dependent on biochar characteristics. The paper concludes with a diagrammatic summation of the influence of biochar on each phase of the nitrogen cycle, which, it is hoped, will serve as a reference for both students and biochar practitioners
- …