140 research outputs found
Cluster-Wise Ratio Tests for Fast Camera Localization
Feature point matching for camera localization suffers from scalability
problems. Even when feature descriptors associated with 3D scene points are
locally unique, as coverage grows, similar or repeated features become
increasingly common. As a result, the standard distance ratio-test used to
identify reliable image feature points is overly restrictive and rejects many
good candidate matches. We propose a simple coarse-to-fine strategy that uses
conservative approximations to robust local ratio-tests that can be computed
efficiently using global approximate k-nearest neighbor search. We treat these
forward matches as votes in camera pose space and use them to prioritize
back-matching within candidate camera pose clusters, exploiting feature
co-visibility captured by clustering the 3D model camera pose graph. This
approach achieves state-of-the-art camera localization results on a variety of
popular benchmarks, outperforming several methods that use more complicated
data structures and that make more restrictive assumptions on camera pose. We
also carry out diagnostic analyses on a difficult test dataset containing
globally repetitive structure that suggest our approach successfully adapts to
the challenges of large-scale image localization
Occlusion Coherence: Detecting and Localizing Occluded Faces
The presence of occluders significantly impacts object recognition accuracy.
However, occlusion is typically treated as an unstructured source of noise and
explicit models for occluders have lagged behind those for object appearance
and shape. In this paper we describe a hierarchical deformable part model for
face detection and landmark localization that explicitly models part occlusion.
The proposed model structure makes it possible to augment positive training
data with large numbers of synthetically occluded instances. This allows us to
easily incorporate the statistics of occlusion patterns in a discriminatively
trained model. We test the model on several benchmarks for landmark
localization and detection including challenging new data sets featuring
significant occlusion. We find that the addition of an explicit occlusion model
yields a detection system that outperforms existing approaches for occluded
instances while maintaining competitive accuracy in detection and landmark
localization for unoccluded instances
Planar Ultrametric Rounding for Image Segmentation
We study the problem of hierarchical clustering on planar graphs. We
formulate this in terms of an LP relaxation of ultrametric rounding. To solve
this LP efficiently we introduce a dual cutting plane scheme that uses minimum
cost perfect matching as a subroutine in order to efficiently explore the space
of planar partitions. We apply our algorithm to the problem of hierarchical
image segmentation
Oriented Edge Forests for Boundary Detection
We present a simple, efficient model for learning boundary detection based on
a random forest classifier. Our approach combines (1) efficient clustering of
training examples based on simple partitioning of the space of local edge
orientations and (2) scale-dependent calibration of individual tree output
probabilities prior to multiscale combination. The resulting model outperforms
published results on the challenging BSDS500 boundary detection benchmark.
Further, on large datasets our model requires substantially less memory for
training and speeds up training time by a factor of 10 over the structured
forest model.Comment: updated to include contents of CVPR version + new figure showing
example segmentation result
Lifting GIS Maps into Strong Geometric Context for Scene Understanding
Contextual information can have a substantial impact on the performance of
visual tasks such as semantic segmentation, object detection, and geometric
estimation. Data stored in Geographic Information Systems (GIS) offers a rich
source of contextual information that has been largely untapped by computer
vision. We propose to leverage such information for scene understanding by
combining GIS resources with large sets of unorganized photographs using
Structure from Motion (SfM) techniques. We present a pipeline to quickly
generate strong 3D geometric priors from 2D GIS data using SfM models aligned
with minimal user input. Given an image resectioned against this model, we
generate robust predictions of depth, surface normals, and semantic labels. We
show that the precision of the predicted geometry is substantially more
accurate other single-image depth estimation methods. We then demonstrate the
utility of these contextual constraints for re-scoring pedestrian detections,
and use these GIS contextual features alongside object detection score maps to
improve a CRF-based semantic segmentation framework, boosting accuracy over
baseline models
- …