1,893 research outputs found
Product perishability and multistore grocery shopping
Perishability, a largely unconsidered characteristic of consumer goods, is shown to play an important role in planned multistore shopping behavior. We present a model of consumers as cost minimizing inventory managers, who choose between two stores differentiated on location and price, and who purchase perishable and nonperishable goods. We show that the interaction between perishability of goods and price differences of stores can be an important driving force for planned multistore shopping. This rationale leads to a set of propositions. One unexpected result is that as the known price difference on a basket of identical goods increases between two stores, shoppers making store choice decisions on the basis of the basket price are more likely to shop regularly at both stores. We present survey results supporting our model's predictions
The equilibrium model for the effect of temperature on enzymes: Insights and implications
A new, experimentally-validated âEquilibrium Modelâ describes the effect of temperature on enzymes, and provides a new mechanism for the reversible loss of enzyme activity with temperature. It incorporates two new, fundamental parameters that allow a complete description of the effect of temperature on enzyme activity: ÎHeq and Teq. ÎHeq emerges as an intrinsic and quantitative measure of enzyme eurythermal adaptation, while Teq, the equilibrium temperature, has fundamental and technological significance for our understanding of the effect of temperature on enzymatic reactions. For biotechnological purposes, these parameters need to be considered when enzymes are applied or engineered for activity at high temperatures
Lensing by Kerr Black Holes. II: Analytical Study of Quasi-Equatorial Lensing Observables
In this second paper, we develop an analytical theory of quasi-equatorial
lensing by Kerr black holes. In this setting we solve perturbatively our
general lens equation with displacement given in Paper I, going beyond
weak-deflection Kerr lensing to third order in our expansion parameter epsilon,
which is the ratio of the angular gravitational radius to the angular Einstein
radius. We obtain new formulas and results for the bending angle, image
positions, image magnifications, total unsigned magnification, and centroid,
all to third order in epsilon and including the displacement. New results on
the time delay between images are also given to second order in epsilon, again
including displacement. For all lensing observables we show that the
displacement begins to appear only at second order in epsilon. When there is no
spin, we obtain new results on the lensing observables for Schwarzschild
lensing with displacement.Comment: 23 pages; final published versio
Excess apoptosis of mononuclear cells contributes to the depressed cytomegalovirus-specific immunity in HIV-infected patients on HAART
HIV-infected patients on highly active antiretroviral therapy (HAART) have persistently decreased cytomegalovirus (CMV)-specific proliferative responses [lymphocyte proliferation assay (LPA)] in spite of increases in CD4+ T cell counts. Here we demonstrate an association between apoptosis of unstimulated peripheral blood mononuclear cells (uPBMC) and decreased CMV-LPA. HAART recipients had more apoptosis of uPBMC than controls when measured by caspases 3, 8, and 9 activities and by annexin V binding. Patients with undetectable HIV replication maintained significantly higher apoptosis of CD4+ and CD14+ cells compared to controls. CMV-LPA decreased with higher apoptosis of uPBMC in patients only. This association was independent of CD4+ cell counts or HIV replication. Furthermore, rescuing PBMC from apoptosis with crmA, but not with TRAIL- or Fas-pathway blocking agents or with other caspase inhibitors, increased CMV-LPA in HAART recipients. This effect was not observed in uninfected controls, further indicating that the down regulatory effect of apoptosis on cell-mediated immunity (CMI) was specifically associated with the HIV-infected status
Globally Distributed R&D Work in a Marketing Management Support Systems (MMSS) Environment
Globalisation, liberalization and rapid technological developments have been changing business environments drastically in
the recent decades. These trends are increasingly exposing businesses to market competition and thus intensifying competition.
In such an environment, the role of marketing management support systems (MMSS) becomes exceedingly important for the
long-term growth of an organisations marketing expertise and success. In this paper, we discuss the evolution of a globally
distributed R&D project spanning three continents in developing an MMSS for the motion picture industry. We first provide the
conceptual background of the MMSS and knowledge management systems relevant for our work. We then provide a detailed
case study of our MMSS implementation. We specifically focus on the following elements of our work: globally distributed
R&D efforts, knowledge elements, and fit between demand and supply sides of MMSS. We conclude with a discussion of
implications for future research in this area
Recommended from our members
Distinctive Structural and Molecular Features of Myelinated Inhibitory Axons in Human Neocortex.
Numerous types of inhibitory neurons sculpt the performance of human neocortical circuits, with each type exhibiting a constellation of subcellular phenotypic features in support of its specialized functions. Axonal myelination has been absent among the characteristics used to distinguish inhibitory neuron types; in fact, very little is known about myelinated inhibitory axons in human neocortex. Here, using array tomography to analyze samples of neurosurgically excised human neocortex, we show that inhibitory myelinated axons originate predominantly from parvalbumin-containing interneurons. Compared to myelinated excitatory axons, they have higher neurofilament and lower microtubule content, shorter nodes of Ranvier, and more myelin basic protein (MBP) in their myelin sheath. Furthermore, these inhibitory axons have more mitochondria, likely to sustain the high energy demands of parvalbumin interneurons, as well as more 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP), a protein enriched in the myelin cytoplasmic channels that are thought to facilitate the delivery of nutrients from ensheathing oligodendrocytes. Our results demonstrate that myelinated axons of parvalbumin inhibitory interneurons exhibit distinctive features that may support the specialized functions of this neuron type in human neocortical circuits
The Photon Underproduction Crisis
We examine the statistics of the low-redshift Lyman-alpha forest from
smoothed particle hydrodynamic simulations in light of recent improvements in
the estimated evolution of the cosmic ultraviolet background (UVB) and recent
observations from the Cosmic Origins Spectrograph (COS). We find that the value
of the metagalactic photoionization rate required by our simulations to match
the observed properties of the low-redshift Lyman-alpha forest is a factor of 5
larger than the value predicted by state-of-the art models for the evolution of
this quantity. This mismatch results in the mean flux decrement of the
Lyman-alpha forest being underpredicted by at least a factor of 2 (a 10-sigma
discrepancy with observations) and a column density distribution of Lyman-alpha
forest absorbers systematically and significantly elevated compared to
observations over nearly two decades in column density. We examine potential
resolutions to this mismatch and find that either conventional sources of
ionizing photons (galaxies and quasars) must be significantly elevated relative
to current observational estimates or our theoretical understanding of the
low-redshift universe is in need of substantial revision.Comment: Submitted to ApJ Letters; 6 pages including 3 figure
A nonlinear quantum model of the Friedmann universe
A discussion is given of the quantisation of a physical system with finite
degrees of freedom subject to a Hamiltonian constraint by treating time as a
constrained classical variable interacting with an unconstrained quantum state.
This leads to a quantisation scheme that yields a Schrodinger-type equation
which is in general nonlinear in evolution. Nevertheless it is compatible with
a probabilistic interpretation of quantum mechanics and in particular the
construction of a Hilbert space with a Euclidean norm is possible. The new
scheme is applied to the quantisation of a Friedmann Universe with a massive
scalar field whose dynamical behaviour is investigated numerically.Comment: 11 pages of text + 4 pages for 8 figure
Thermal photons and dileptons
We discuss the status of a subset of penetrating probes in relativistic
nuclear collisions. Thermal photons and dileptons are considered, as well as
the electromagnetic signature of jets.Comment: Talk presented at the 18th International Conference on
Ultrarelativistic Nucleus-Nucleus Collisions, Quark Matter 2005, Budapest,
Hungary, 4-9 Auguest 200
Importance of Tests for the Complete Lorentz Structure of the t --> W+ b vertex at Hadron Colliders
The most general Lorentz-invariant decay-density-matrix for , or for , is expressed in terms
of eight helicity parameters. The parameters are physically defined in terms of
partial-width-intensities for polarized-final-states in decay.
The parameters are the partial width, the quark's chirality parameter
, the polarimetry parameter , a "pre-SSB" test parameter
, and four - interference parameters , ,
, which test for violation. They can be
used to test for non-CKM-type CP violation, anomalous 's, top
weak magnetism, weak electricity, and second-class currents. By stage-two
spin-correlation techniques, percent level statistical uncertainites are
typical for measurements at the Tevatron, and several mill level uncertainites
are typical at the LHC.Comment: Minor clarifications. Expression for r_{+-} corrected. 19 pages LaTex
+ Tables + 1 Figur
- âŠ