60 research outputs found

    The Nanotechnology R(evolution)

    Get PDF
    Nanotechnology as a social concept and investment focal point has drawn much attention. Here we consider the place of nanotechnology in the second great technological revolution of mankind that began some 200 years ago. The so-called nanotechnology revolution represents both a continuation of prior science and technology trends and a re-awakening to the benefits of significant investment in fundamental research. We consider the role the military might play in the development of nanotechnology innovations, nanotechnology's context in the history of technology, and the global competition to lead the next technological revolution.Comment: Preprint of chapter to appear in Nanoethics: Examining the Societal Impact of Nanotechnology, Fritz Allhoff, Patrick Lin, James Moor, and John Weckert, eds., (2007). Visit http://www.tahan.com/charlie/nanosociety/ for more informatio

    Identifying Nanotechnology in Society

    Get PDF
    Manufacturing materials and systems with components thousands of times smaller than the width of a human hair promises vast and sometimes unimaginable advances in technology. Yet the term nanotechnology has formed as much from people's expectations as from scientific reality. Understanding the creation and context of this social construction can help us appreciate and guide what may be a burgeoning revolution. This chapter considers what different groups are referring to when they say nanotechnology, how this relates to the science involved, and how the various definitions of this broad field of endeavor might be improved. The ramifications and implications of these seemingly innocuous naming choices are also discussed. Although in many respects nanotechnology serves as cover justification for increased spending in the physical sciences, at present it is the most hopeful route to solving some of the planet's greatest problems.Comment: Preprint of article to appear in Advances in Computers, Marvin Zelkowitz, ed. (2007). Visit http://www.tahan.com/charlie/nanosociety/ for more informatio

    Quantum-limited measurement of spin qubits via curvature coupling to a cavity

    Full text link
    We investigate coupling an encoded spin qubit to a microwave resonator via qubit energy level curvature versus gate voltage. This approach enables quantum non-demolition readout with strength of tens to hundred MHz all while the qubit stays at its full sweet-spot to charge noise, with zero dipole moment. A "dispersive-like" spin readout approach similar to circuit-QED but avoiding the Purcell effect is proposed. With the addition of gate voltage modulation, selective longitudinal readout and n-qubit entanglement-by-measurement are possible.Comment: 5 pages, 1 figur

    Relaxation of excited spin, orbital, and valley qubit states in single electron silicon quantum dots

    Full text link
    We expand on previous work that treats relaxation physics of low-lying excited states in ideal, single electron, silicon quantum dots in the context of quantum computing. These states are of three types: orbital, valley, and spin. The relaxation times depend sensitively on system parameters such as the dot size and the external magnetic field. Generally, however, orbital relaxation times are short in strained silicon (from a tenth of a microsecond to picoseconds), spin relaxation times are long (microseconds to greater than seconds), while valley relaxation times are expected to lie in between. The focus is on relaxation due to emission or absorption of phonons, but for spin relaxation we also consider competing mechanisms such as charge noise. Where appropriate, comparison is made to reference systems such as quantum dots in III-V materials and silicon donor states. The phonon bottleneck effect is shown to be rather small in the silicon dots of interest. We compare the theoretical predictions to some recent spin relaxation experiments and comment on the possible effects of non-ideal dots.Comment: Previously unpublished as well as new results for spin relaxation in ideal silicon quantum dots. Minor update: fixed Fig

    Semiconductor-inspired design principles for superconducting quantum computing

    Full text link
    Superconducting circuits offer tremendous design flexibility in the quantum regime culminating most recently in the demonstration of few qubit systems supposedly approaching the threshold for fault-tolerant quantum information processing. Competition in the solid-state comes from semiconductor qubits, where nature has bestowed some very useful properties which can be utilized for spin qubit based quantum computing. Here we begin to explore how selective design principles deduced from spin-based systems could be used to advance superconducting qubit science. We take an initial step along this path proposing an encoded qubit approach realizable with state-of-the-art tunable Josephson junction qubits. Our results show that this design philosophy holds promise, enables microwave-free control, and offers a pathway to future qubit designs with new capabilities such as with higher fidelity or, perhaps, operation at higher temperature. The approach is also especially suited to qubits based on variable super-semi junctions.Comment: 10 pages, 6 figures, accepted versio

    Toward engineered quantum many-body phonon systems

    Full text link
    Arrays of coupled phonon cavities each including an impurity qubit in silicon are considered. We study experimentally feasible architectures that can exhibit quantum many-body phase transitions of phonons, e.g. Mott insulator and superfluid states, due to a strong phonon-phonon interaction (which is mediated by the impurity qubit-cavity phonon coupling). We investigate closed equilibrium systems as well as driven dissipative non-equilibrium systems at zero and non-zero temperatures. Our results indicate that quantum many-body phonon systems are achievable both in on-chip nanomechanical systems in silicon and distributed Bragg reflector phonon cavity heterostructures in silicon-germanium. Temperature and driving field are shown to play a critical role in achieving these phonon superfluid and insulator states, results that are also applicable to polariton systems. Experimental procedures to detect these states are also given. Cavity-phoniton systems enable strong phonon-phonon interactions as well as offering long wavelengths for forming extended quantum states; they may have some advantage in forming truly quantum many-body mechanical states as compared to other optomechanical systems.Comment: 7 pages, 5 figure

    Superconducting-semiconductor quantum devices: from qubits to particle detectors

    Full text link
    Recent improvements in materials growth and fabrication techniques may finally allow for superconducting semiconductors to realize their potential. Here we build on a recent proposal to construct superconducting devices such as wires, Josephson junctions, and qubits inside and out-of single crystal silicon or germanium. Using atomistic fabrication techniques such as STM hydrogen lithography, heavily-doped superconducting regions within a single crystal could be constructed. We describe the characteristic parameters of basic superconducting elements---a 1D wire and a tunneling Josephson junction---and estimate the values for boron-doped silicon. The epitaxial, single-crystal nature of these devices, along with the extreme flexibility in device design down to the single-atom scale, may enable lower-noise or new types of devices and physics. We consider applications for such super-silicon devices, showing that the state-of-the-art transmon qubit and the sought-after phase-slip qubit can both be realized. The latter qubit leverages the natural high kinetic inductance of these materials. Building on this, we explore how kinetic inductance based particle detectors (e.g., photon or phonon) could be realized with potential application in astronomy or nanomechanics. We discuss super-semi devices (such as in silicon, germanium, or diamond) which would not require atomistic fabrication approaches and could be realized today.Comment: 8 pages, 6 figures; (v2) accepted version, to appear in IEEE Journal of Selected Topics in Quantum Electronic

    Theory of barrier vs tilt exchange gate operations in spin-based quantum computing

    Full text link
    We present a theory for understanding the exchange interaction between electron spins in neighboring quantum dots, either by changing the detuning of the two quantum dots or independently tuning the tunneling barrier between quantum dots. The Hubbard model and a more realistic confining-potential model are used to investigate how the tilting and barrier control affect the effective exchange coupling and thus the gate fidelity in both the detuning and symmetric regimes. We show that the exchange coupling is less sensitive to the charge noise through tunnel barrier control (while allowing for exchange coupling operations on a sweet spot where the exchange interaction has zero derivative with respect to the detuning). Both GaAs and Si quantum dots are considered and we compare our results with experimental data showing qualitative agreements. Our results answer the open question of why barrier gates are preferable to tilt gates for exchange-base gate operations

    Bottom-up superconducting and Josephson junction devices inside a group-IV semiconductor

    Full text link
    Superconducting circuits are exceptionally flexible, enabling many different devices from sensors to quantum computers. Separately, epitaxial semiconductor devices such as spin qubits in silicon offer more limited device variation but extraordinary quantum properties for a solid-state system. It might be possible to merge the two approaches, making single-crystal superconducting devices out of a semiconductor by utilizing the latest atomistic fabrication techniques. Here we propose superconducting devices made from precision hole-doped regions within a silicon (or germanium) single crystal. We analyze the properties of this superconducting semiconductor and show that practical superconducting wires, Josephson tunnel junctions or weak links, superconducting quantum interference devices (SQUIDs), and qubits are feasible. This work motivates the pursuit of "bottom-up" superconductivity for improved or fundamentally different technology and physics.Comment: 9 pages, 4 figures; (v2) Fixed math error in estimate of the hole density and critical temperature for one doped atomic layer (all other numbers and figures are unchanged); even a single doped layer may be sufficient to observe superconductivity; (v3) accepted versio

    Silicon in the Quantum Limit: Quantum Computing and Decoherence in Silicon Architectures

    Full text link
    Semiconductor architectures hold promise for quantum information processing (QIP) applications due to their large industrial base and perceived scalability potential. Electron spins in silicon in particular may be an excellent architecture for QIP and also for spin electronics (spintronics) applications. While the charge of an electron is easily manipulated by charged gates, the spin degree of freedom is well isolated from charge fluctuations. Inherently small spin-orbit coupling and the existence of a spin-zero Si isotope facilitate long single spin qubit coherence times. Here we consider the relaxation properties of localized electronic states in silicon due to donors, quantum wells, and quantum dots, including effects due to phonons and Rashba spin-orbit coupling. Our analysis is impeded by the complicated, many-valley band structure of silicon and previously unaddressed physics in silicon quantum wells. We find that electron spins in silicon and especially strained silicon have excellent decoherence properties. Where possible we compare with experiment to test our theories. We go beyond issues of coherence in a quantum computer to problems of control and measurement. Precisely what makes spin relaxation so long in semiconductor architectures makes spin measurement so difficult. To address this, we propose a new scheme for spin readout which has the added benefit of automatic spin initialization, a vital component of quantum computing and quantum error correction. Our results represent important practical milestones on the way to the design and construction of a silicon-based quantum computer.Comment: 2005 Thesis. Per a request to post, bit out-dated but includes some relevant calculations (not completely sure if this is the published version or a late draft
    • …
    corecore