302 research outputs found
Allergies Related to Mosquitoes, Repellents, and Insecticides
Man\u27s skin response to the mosquito bite exhibits great individual variability. The everyday immediate reaction consists o f a red, or erythematous wheal that lasts only one or two hours. Twenty to 24 hours after the mosquito bite, a delayed reaction of erythema, swelling, and itching may also occur. An individual may exhibit an immediate reaction, delayed reaction, both reactions, or neither reaction. Studies suggest that sensitization to mosquito saliva may be responsible for the inflammatory response. This hypothesis is supported by histologic studies which demonstrate striking infiltration of inflammatory cells at the site of mosquito bites. Severe local reactions can occur in areas of compromised circulation.
Severe systemic reactions, on the other hand, are extremely rare. Although allergy or hypersensitivity to mosquito saliva is thought to cause both the ordinary and systemic bite reactions, this has not been investigated by modern immunologic methods.
The use of insect repellents is a safe, effective method for avoiding insect bites. However, these agents can cause allergic contact dermatitis or hives. Aerosol insecticides are also effective, but respiratory allergic symptoms can occur in susceptible or asthmatic individuals
High-Energy Cosmology: gamma rays and neutrinos from beyond the galaxy
Our knowledge of the high-energy universe is undergoing a period of rapid
change as new astronomical detectors of high-energy radiation start to operate
at their design sensitivities. Now is a boomtime for high-energy astrophysics,
with new discoveries from Swift and HESS, results from MAGIC and VERITAS
starting to be reported, the upcoming launches of the gamma-ray space
telescopes GLAST and AGILE, and anticipated data releases from IceCube and
Auger. A formalism for calculating statistical properties of cosmological
gamma-ray sources is presented. Application is made to model calculations of
the statistical distributions of gamma-ray and neutrino emission from (i)
beamed sources, specifically, long-duration GRBs, blazars, and extagalactic
microquasars, and (ii) unbeamed sources, including normal galaxies, starburst
galaxies and clusters. Expressions for the integrated intensities of faint
beamed and unbeamed high-energy radiation sources are also derived. A toy model
for the background intensity of radiation from dark-matter annihilation taking
place in the early universe is constructed. Estimates for the gamma-ray fluxes
of local group galaxies, starburst, and infrared luminous galaxies are briefly
reviewed. Because the brightest extragalactic gamma-ray sources are flaring
sources, and these are the best targets for sources of PeV -- EeV neutrinos and
ultra-high energy cosmic rays, rapidly slewing all-sky telescopes like MAGIC
and an all-sky gamma-ray observatory beyond Milagro will be crucial for optimal
science return in the multi-messenger age.Comment: 10 pages, 3 figs, accepted for publication in the Barcelona
Conference on Multimessenger Astronomy; corrected eq. 27, revised Fig. 3,
added 2 ref
Stream food web response to a salmon carcass analogue addition in two central Idaho, U.S.A. streams
Pacific salmon and steelhead once contributed large amounts of marine-derived carbon, nitrogen and phosphorus to freshwater ecosystems in the Pacific Northwest of the United States of America (California, Oregon, Washington and Idaho). Declines in historically abundant anadromous salmonid populations represent a significant loss of returning nutrients across a large spatial scale. Recently, a manufactured salmon carcass analogue was developed and tested as a safe and effective method of delivering nutrients to freshwater and linked riparian ecosystems where marine-derived nutrients have been reduced or eliminated.We compared four streams: two reference and two treatment streams using salmon carcass analogue(s) (SCA) as a treatment. Response variables measured included: surface streamwater chemistry; nutrient limitation status; carbon and nitrogen stable isotopes; periphyton chlorophyll a and ash-free dry mass (AFDM); macroinvertebrate density and biomass; and leaf litter decomposition rates. Within each stream, upstream reference and downstream treatment reaches were sampled 1 year before, during, and 1 year after the addition of SCA.Periphyton chlorophyll a and AFDM and macroinvertebrate biomass were significantly higher in stream reaches treated with SCA. Enriched stable isotope (δ15N) signatures were observed in periphyton and macroinvertebrate samples collected from treatment reaches in both treatment streams, indicating trophic transfer from SCA to consumers. Densities of Ephemerellidae, Elmidae and Brachycentridae were significantly higher in treatment reaches. Macroinvertebrate community composition and structure, as measured by taxonomic richness and diversity, did not appear to respond significantly to SCA treatment. Leaf breakdown rates were variable among treatment streams: significantly higher in one stream treatment reach but not the other. Salmon carcass analogue treatments had no detectable effect on measured water chemistry variables.Our results suggest that SCA addition successfully increased periphyton and macroinvertebrate biomass with no detectable response in streamwater nutrient concentrations. Correspondingly, no change in nutrient limitation status was detected based on dissolved inorganic nitrogen to soluble reactive phosphorus ratios (DIN/SRP) and nutrient-diffusing substrata experiments. Salmon carcass analogues appear to increase freshwater productivity.Salmon carcass analogues represent a pathogen-free nutrient enhancement tool that mimics natural trophic transfer pathways, can be manufactured using recycled fish products, and is easily transported; however, salmon carcass analogues should not be viewed as a replacement for naturally spawning salmon and the important ecological processes they provide
Search for supersymmetry with a dominant R-parity violating LQDbar couplings in e+e- collisions at centre-of-mass energies of 130GeV to 172 GeV
A search for pair-production of supersymmetric particles under the assumption
that R-parity is violated via a dominant LQDbar coupling has been performed
using the data collected by ALEPH at centre-of-mass energies of 130-172 GeV.
The observed candidate events in the data are in agreement with the Standard
Model expectation. This result is translated into lower limits on the masses of
charginos, neutralinos, sleptons, sneutrinos and squarks. For instance, for
m_0=500 GeV/c^2 and tan(beta)=sqrt(2) charginos with masses smaller than 81
GeV/c^2 and neutralinos with masses smaller than 29 GeV/c^2 are excluded at the
95% confidence level for any generation structure of the LQDbar coupling.Comment: 32 pages, 30 figure
Energy Flow in the Hadronic Final State of Diffractive and Non-Diffractive Deep-Inelastic Scattering at HERA
An investigation of the hadronic final state in diffractive and
non--diffractive deep--inelastic electron--proton scattering at HERA is
presented, where diffractive data are selected experimentally by demanding a
large gap in pseudo --rapidity around the proton remnant direction. The
transverse energy flow in the hadronic final state is evaluated using a set of
estimators which quantify topological properties. Using available Monte Carlo
QCD calculations, it is demonstrated that the final state in diffractive DIS
exhibits the features expected if the interaction is interpreted as the
scattering of an electron off a current quark with associated effects of
perturbative QCD. A model in which deep--inelastic diffraction is taken to be
the exchange of a pomeron with partonic structure is found to reproduce the
measurements well. Models for deep--inelastic scattering, in which a
sizeable diffractive contribution is present because of non--perturbative
effects in the production of the hadronic final state, reproduce the general
tendencies of the data but in all give a worse description.Comment: 22 pages, latex, 6 Figures appended as uuencoded fil
Geophysical and atmospheric evolution of habitable planets
The evolution of Earth-like habitable planets is a complex process that depends on the geodynamical and geophysical environments. In particular, it is necessary that plate tectonics remain active over billions of years. These geophysically active environments are strongly coupled to a planet's host star parameters, such as mass, luminosity and activity, orbit location of the habitable zone, and the planet's initial water inventory. Depending on the host star's radiation and particle flux evolution, the composition in the thermosphere, and the availability of an active magnetic dynamo, the atmospheres of Earth-like planets within their habitable zones are differently affected due to thermal and nonthermal escape processes. For some planets, strong atmospheric escape could even effect the stability of the atmosphere
Quantitative analyses and modelling to support achievement of the 2020 goals for nine neglected tropical diseases
Quantitative analysis and mathematical models are useful tools in informing strategies to control or eliminate disease. Currently, there is an urgent need to develop these tools to inform policy to achieve the 2020 goals for neglected tropical diseases (NTDs). In this paper we give an overview of a collection of novel model-based analyses which aim to address key questions on the dynamics of transmission and control of nine NTDs: Chagas disease, visceral leishmaniasis, human African trypanosomiasis, leprosy, soil-transmitted helminths, schistosomiasis, lymphatic filariasis, onchocerciasis and trachoma. Several common themes resonate throughout these analyses, including: the importance of epidemiological setting on the success of interventions; targeting groups who are at highest risk of infection or re-infection; and reaching populations who are not accessing interventions and may act as a reservoir for infection,. The results also highlight the challenge of maintaining elimination 'as a public health problem' when true elimination is not reached. The models elucidate the factors that may be contributing most to persistence of disease and discuss the requirements for eventually achieving true elimination, if that is possible. Overall this collection presents new analyses to inform current control initiatives. These papers form a base from which further development of the models and more rigorous validation against a variety of datasets can help to give more detailed advice. At the moment, the models' predictions are being considered as the world prepares for a final push towards control or elimination of neglected tropical diseases by 2020
PROMISING THE DREAM: changing destination image of London through the effect of website place
Drawing on theories of place identity and social identity, this study aims to fill a gap in place identity studies regarding the effect of a place website on the destination image of customers/visitors/tourists. The research addresses three questions: (1) what are the main impacts of tourists’ attitude on place identity and the place website, (2) what are the factors that influence destination image, and (3) what are the main impacts of a favorable destination image? The favorability of a destination image is reflected by the extent to which visitors positively regard that place website. Results reveal the importance of the destination image in enhancing the intention to revisit and recommend. Also, visitors’ satisfaction impacts on their intention to revisit and recommend the place. Significant implications for place managers and researchers are highlighted
- …