3 research outputs found

    Effects of Lizardite Addition on Technological Properties of Forsterite-monticellite Rich Ceramics Prepared from Natural Magnesite and Dolomite

    Get PDF
    Lizardite rich peridotite has never been used to prepare ceramic specimens, especially in Morocco. For this raison, potential use of naturally abundant lazirditic material from the Rif domain, as a supply for ceramic industry, has been evaluated. The effects of lizardite addition to magnesite and dolomite mixtures on the thermomechanical properties of the calcined ceramics were also detailed. To achieve this target, natural lizardite, magnesite and dolomite samples were collected in ultrabasic Beni Bousra massif. Those raw samples were used for the synthesis of a forsterite-monticellite rich ceramics. Both raw and sintered samples were characterized by x-ray diffraction, scanning electron microscope and fourier transform infrared. The obtained results showed that both magnesite and dolomite were mainly composed of MgCO3 and CaCO3. In contrast, lizardite sample showed high amounts of SiO2, MgO and Fe2O3. An increased amount of lizardite in the initial mixtures enhanced mechanical and dimensional properties of the prepared ceramic specimens, and subsequently, the production of ceramics with the required technological properties. Thus, the preparation of Moroccan lizardite-based ceramics is technically feasible, economically justifiable and socially desirable due to the contribution to the economic growth of the raw materials sector, especially ceramic industry

    TiO<sub>2</sub> Based Nanomaterials and Their Application as Anode for Rechargeable Lithium-Ion Batteries

    No full text
    Titanium dioxide- (TiO2-) based nanomaterials have been widely adopted as active materials for photocatalysis, sensors, solar cells, and for energy storage and conversion devices, especially rechargeable lithium-ion batteries (LIBs), due to their excellent structural and cycling stability, high discharge voltage plateau (more than 1.7 V versus Li+/Li), high safety, environmental friendliness, and low cost. However, due to their relatively low theoretical capacity and electrical conductivity, their use in practical applications, i.e. anode materials for LIBs, is limited. Several strategies have been developed to improve the conductivity, the capacity, the cycling stability, and the rate capability of TiO2-based materials such as designing different nanostructures (1D, 2D, and 3D), Coating or combining TiO2 with carbonaceous materials, and selective doping with mono and heteroatoms. This chapter is devoted to the development of a simple and cost-efficient strategies for the preparation of TiO2 nanoparticles as anode material for lithium ion batteries (LIBs). These strategies consist of using the Sol–Gel method, with a sodium alginate biopolymer as a templating agent and studying the influence of calcination temperature and phosphorus doping on the structural, the morphological and the textural properties of TiO2 material. Moreover, the synthetized materials were tested electrochemically as anode material for lithium ion battery. TiO2 electrodes calcined at 300°C and 450°C have delivered a reversible capacity of 266 mAh g−1, 275 mAh g−1 with coulombic efficiencies of 70%, 75% during the first cycle under C/10 current rate, respectively. Besides, the phosphorus doped TiO2 electrodes were presented excellent lithium storage properties compared to the non-doped electrodes which can be attributed to the beneficial role of phosphorus doping to inhibit the growth of TiO2 nanoparticles during the synthesis process and provide a high electronic conductivity

    LiNi<sub>0.8</sub>Fe<sub>0.1</sub>Al<sub>0.1</sub>O<sub>2</sub> as a Cobalt-Free Cathode Material with High Capacity and High Capability for Lithium-Ion Batteries

    No full text
    Obtaining cathode materials with high capacity and cycle stability is one of the main challenges regarding the success of electric vehicle technologies. However, most of the widely used materials with these properties involve the use of toxic and expensive cobalt as the active material. To overcome this challenge, this work proposes a novel cobalt-free cathode material, synthesized for the first time using a solid-state reaction, whose general formula is LiNi0.8Fe0.1Al0.1O2 (NFA). This class of materials offers high capacity and reduces the battery costs by removing cobalt, without jeopardizing the structural stability and safety of the NFAs. The morphology and the structural properties of the obtained NFA cathode material were characterized using different techniques, e.g., scanning electronic microscopy, X-ray diffraction, X-ray fluorescence, and infrared and Raman spectroscopies. The electrochemical activity and diffusivity of the Li-ion during lithium removal and its insertion into the bulk of the NFA cathode demonstrated high-yield specific capacities of ≈180 mAh g−1 at 0.1C, along with a reasonable rate capability and cycling stability, with a capacity retention of ≈99.6% after 100 charge/discharge cycles at a rate of C/2, and whose operando X-ray diffraction experiments have been used to study the crystallographic transitions during the lithiation–delithiation reaction
    corecore