566 research outputs found

    In Vitro Model of Tumor Cell Extravasation

    Get PDF
    Tumor cells that disseminate from the primary tumor and survive the vascular system can eventually extravasate across the endothelium to metastasize at a secondary site. In this study, we developed a microfluidic system to mimic tumor cell extravasation where cancer cells can transmigrate across an endothelial monolayer into a hydrogel that models the extracellular space. The experimental protocol is optimized to ensure the formation of an intact endothelium prior to the introduction of tumor cells and also to observe tumor cell extravasation by having a suitable tumor seeding density. Extravasation is observed for 38.8% of the tumor cells in contact with the endothelium within 1 day after their introduction. Permeability of the EC monolayer as measured by the diffusion of fluorescently-labeled dextran across the monolayer increased 3.8 fold 24 hours after introducing tumor cells, suggesting that the presence of tumor cells increases endothelial permeability. The percent of tumor cells extravasated remained nearly constant from1 to 3 days after tumor seeding, indicating extravasation in our system generally occurs within the first 24 hours of tumor cell contact with the endothelium

    Hot embossing for fabrication of a microfluidic 3D cell culture

    Get PDF
    Clinically relevant studies of cell function in vitro require a physiologically-representative microenvironment possessing aspects such as a 3D extracellular matrix (ECM) and controlled biochemical and biophysical parameters. A polydimethylsiloxane (PDMS) microfluidic system with a 3D collagen gel has previously served for analysis of factors inducing different responses of cells in a 3D microenvironment under controlled biochemical and biophysical parameters. In the present study, applying the known commercially-viable manufacturing methods to a cyclic olefin copolymer (COC) material resulted in a microfluidic device with enhanced 3D gel capabilities, controlled surface properties, and improved potential to serve high-volume applications. Hot embossing and roller lamination molded and sealed the microfluidic device. A combination of oxygen plasma and thermal treatments enhanced the sealing, ensured proper placement of the 3D gel, and created controlled and stable surface properties within the device. Culture of cells in the new device indicated no adverse effects of the COC material or processing as compared to previous PDMS devices. The results demonstrate a methodology to transition microfludic devices for 3D cell culture from scientific research to high-volume applications with broad clinical impact.National Cancer Institute (U.S.) (award R21CA140096)Charles Stark Draper Laboratory (IR&D Grant

    Global occurrence of Torque teno virus in water systems

    Get PDF
    Bacterial indicator organisms are used globally to assess the microbiological safety of waters. However, waterborne viral outbreaks have occurred in drinking water systems despite negative bacterial results. Using viral markers may therefore provide more accurate health risk assessment data. In this study, fecal, wastewater, stormwater, surface water (fresh and salt), groundwater, and drinking water samples were analyzed for the presence or concentration of traditional indicators, innovative indicators and viral markers. Samples were obtained in the United States, Italy, and Australia and results compared to those reported for studies conducted in Asia and South America as well. Indicators included total coliforms, Escherichia coli, enterococci, male-specific coliphages, somatic coliphages and microviradae. Viral markers included adenovirus, polyomavirus, and a potential new surrogate, Torque teno virus (TTV). TTV was more frequently found in wastewaters (38-100%) and waters influenced by waste discharges (25%) than in surface waters used as drinking water sources (5%). TTV was also specific to human rather than animal feces. While TTV numbers were strongly correlated to other viral markers in wastewaters, suggesting its utility as a fecal contamination marker, data limitations and TTV presence in treated drinking waters demonstrates that additional research is needed on this potential viral indicator

    Coordinated Multiple Cadaver Use for Minimally Invasive Surgical Training

    Get PDF
    BackgroundThe human cadaver remains the gold standard for anatomic training and is highly useful when incorporated into minimally invasive surgical training programs. However, this valuable resource is often not used to its full potential due to a lack of multidisciplinary cooperation. Herein, we propose the coordinated multiple use of individual cadavers to better utilize anatomical resources and potentiate the availability of cadaver training.MethodsTwenty-two postgraduate surgeons participated in a robot-assisted surgical training course that utilized shared cadavers. All participants completed a Likert 4-scale satisfaction questionnaire after their training session. Cadaveric tissue quality and the quality of the training session related to this material were assessed.ResultsNine participants rated the quality of the cadaveric tissue as excellent, 7 as good, 5 as unsatisfactory, and 1 as poor. Overall, 72% of participants who operated on a previously used cadaver were satisfied with their training experience and did not perceive the previous use deleterious to their training.ConclusionThe coordinated use of cadavers, which allows for multiple cadaver use for different teaching sessions, is an excellent training method that increases availability of human anatomical material for minimally invasive surgical training

    Creation of Laryngeal Grafts from Primary Human Cells and Decellularized Laryngeal Scaffolds

    Get PDF
    Current reconstruction methods of the laryngotracheal segment fail to replace the complex functions of the human larynx. Bioengineering approaches to reconstruction have been limited by the complex tissue compartmentation of the larynx. We attempted to overcome this limitation by bio-engineering laryngeal grafts from decellularized canine laryngeal scaffolds recellularized with human primary cells under one uniform culture medium condition. First, we generated laryngeal scaffolds with preserved glycosaminoglycan content and biomechanical properties by detergent perfusion-decellularization over nine days. We proofed biocompatibility by absence of a CD3 lymphocyte response to subcutaneously implanted scaffolds in immune-competent rats. We then developed a uniform culture medium that strengthened the endothelial barrier over 5 days after an initial growth phase. Simultaneously, this culture medium supported airway epithelial cell and skeletal myoblast growth while maintaining their full differentiation and maturation potential. We then applied the uniform culture medium composition to whole laryngeal scaffolds seeded with endothelial cells from both carotid arteries and external jugular veins and generated re-endothelialized arterial and venous vascular beds. Under the same culture medium condition, we bio-engineered epithelial monolayers onto laryngeal mucosa and repopulated intrinsic laryngeal muscle. We were then able to demonstrate early muscle formation in heterotopic transplantations in immuno-deficient mice. The model supported the formation of three humanized laryngeal tissue compartments under one uniform culture condition, possibly a key factor in developing, complex, multicellular, ready-to-transplant tissue grafts
    corecore