1,947 research outputs found
E-Government Partnerships Across Levels of Government
E-government Partnerships across Levels of Government, is an overview of the challenges and approaches to creating a collaborative and cooperative partnership across levels of government for e-government development and implementation.E-Governance; cooperative partenership; decentralization; federalism
Enclosings of Decompositions of Complete Multigraphs in -Edge-Connected -Factorizations
A decomposition of a multigraph is a partition of its edges into
subgraphs . It is called an -factorization if every
is -regular and spanning. If is a subgraph of , a
decomposition of is said to be enclosed in a decomposition of if, for
every , is a subgraph of .
Feghali and Johnson gave necessary and sufficient conditions for a given
decomposition of to be enclosed in some -edge-connected
-factorization of for some range of values for the parameters
, , , , : , and either ,
or and and , or and . We generalize
their result to every and . We also give some
sufficient conditions for enclosing a given decomposition of in
some -edge-connected -factorization of for every
and , where is a constant that depends only on ,
and~.Comment: 17 pages; fixed the proof of Theorem 1.4 and other minor change
OMP-type Algorithm with Structured Sparsity Patterns for Multipath Radar Signals
A transmitted, unknown radar signal is observed at the receiver through more
than one path in additive noise. The aim is to recover the waveform of the
intercepted signal and to simultaneously estimate the direction of arrival
(DOA). We propose an approach exploiting the parsimonious time-frequency
representation of the signal by applying a new OMP-type algorithm for
structured sparsity patterns. An important issue is the scalability of the
proposed algorithm since high-dimensional models shall be used for radar
signals. Monte-Carlo simulations for modulated signals illustrate the good
performance of the method even for low signal-to-noise ratios and a gain of 20
dB for the DOA estimation compared to some elementary method
Perfect graphs of arbitrarily large clique-chromatic number
We prove that there exist perfect graphs of arbitrarily large
clique-chromatic number. These graphs can be obtained from cobipartite graphs
by repeatedly gluing along cliques. This negatively answers a question raised
by Duffus, Sands, Sauer, and Woodrow in [Two-coloring all two-element maximal
antichains, J. Combinatorial Theory, Ser. A, 57 (1991), 109-116]
Limits of Structures and the Example of Tree-Semilattices
The notion of left convergent sequences of graphs introduced by Lov\' asz et
al. (in relation with homomorphism densities for fixed patterns and
Szemer\'edi's regularity lemma) got increasingly studied over the past
years. Recently, Ne\v set\v ril and Ossona de Mendez introduced a general
framework for convergence of sequences of structures. In particular, the
authors introduced the notion of -convergence, which is a natural
generalization of left-convergence. In this paper, we initiate study of
-convergence for structures with functional symbols by focusing on the
particular case of tree semi-lattices. We fully characterize the limit objects
and give an application to the study of left convergence of -partite
cographs, a generalization of cographs
- âŠ