50 research outputs found

    Modeling of the THS-II series/parallel power train and its energy management system

    No full text
    Full text available at http://www.fisita2010.com/programme/programme/pdf/F2010B107.pdfInternational audienceThe hybridization of the conventional thermal vehicles nowadays constitutes a paramount importance for car manufacturers, facing the challenge of minimizing the consumption of the road transport. Although hybrid power train technologies did not converge towards a single solution, series/parallel power trains with a power-split electromechanical transmission prove to be the most promising hybrid technology. In fact, these power trains show maximum power train overall efficiency and maximum fuel reduction in almost all driving conditions compared to the conventional and other hybrid power trains

    Design of optimal rule-based controller for plug-in series hybrid electric vehicle

    Get PDF
    International audienceEnergy consumption of Hybrid Electric Vehicles (HEV) strongly depends on the adopted energy management strategy (EMS). Rule-Based (RB) controllers are the most commonly used for their ability of integration in real-time applications. Unlike global optimization routines, RB controllers do not ensure optimal energy savings. This study presents a methodology to design a close-to-optimal RB controller derived from global optimization strategies. First, dynamic programming (DP) optimization is used to derive the optimal behaviour of the powertrain components on the Worldwide Harmonized Light Vehicles Test Cycle (WLTC), and then, the resulting performance of the powertrain components is used to design an optimized RB energy management strategy. Furthermore, the strategy is developed to cope with the variations in trip length and traffic conditions. The plug-in series hybrid electric vehicle is modelled using the energetic macroscopic representation (EMR). Results show that the proposed optimal RB controller is only consuming 1-2% more fuel compared to DP controllers and is resulting in a 13-16% less fuel consumption compared to basic RB controllers

    Global, regional, and national under-5 mortality, adult mortality, age-specific mortality, and life expectancy, 1970–2016: a systematic analysis for the Global Burden of Disease Study 2016

    Get PDF
    BACKGROUND: Detailed assessments of mortality patterns, particularly age-specific mortality, represent a crucial input that enables health systems to target interventions to specific populations. Understanding how all-cause mortality has changed with respect to development status can identify exemplars for best practice. To accomplish this, the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) estimated age-specific and sex-specific all-cause mortality between 1970 and 2016 for 195 countries and territories and at the subnational level for the five countries with a population greater than 200 million in 2016. METHODS: We have evaluated how well civil registration systems captured deaths using a set of demographic methods called death distribution methods for adults and from consideration of survey and census data for children younger than 5 years. We generated an overall assessment of completeness of registration of deaths by dividing registered deaths in each location-year by our estimate of all-age deaths generated from our overall estimation process. For 163 locations, including subnational units in countries with a population greater than 200 million with complete vital registration (VR) systems, our estimates were largely driven by the observed data, with corrections for small fluctuations in numbers and estimation for recent years where there were lags in data reporting (lags were variable by location, generally between 1 year and 6 years). For other locations, we took advantage of different data sources available to measure under-5 mortality rates (U5MR) using complete birth histories, summary birth histories, and incomplete VR with adjustments; we measured adult mortality rate (the probability of death in individuals aged 15-60 years) using adjusted incomplete VR, sibling histories, and household death recall. We used the U5MR and adult mortality rate, together with crude death rate due to HIV in the GBD model life table system, to estimate age-specific and sex-specific death rates for each location-year. Using various international databases, we identified fatal discontinuities, which we defined as increases in the death rate of more than one death per million, resulting from conflict and terrorism, natural disasters, major transport or technological accidents, and a subset of epidemic infectious diseases; these were added to estimates in the relevant years. In 47 countries with an identified peak adult prevalence for HIV/AIDS of more than 0·5% and where VR systems were less than 65% complete, we informed our estimates of age-sex-specific mortality using the Estimation and Projection Package (EPP)-Spectrum model fitted to national HIV/AIDS prevalence surveys and antenatal clinic serosurveillance systems. We estimated stillbirths, early neonatal, late neonatal, and childhood mortality using both survey and VR data in spatiotemporal Gaussian process regression models. We estimated abridged life tables for all location-years using age-specific death rates. We grouped locations into development quintiles based on the Socio-demographic Index (SDI) and analysed mortality trends by quintile. Using spline regression, we estimated the expected mortality rate for each age-sex group as a function of SDI. We identified countries with higher life expectancy than expected by comparing observed life expectancy to anticipated life expectancy on the basis of development status alone. FINDINGS: Completeness in the registration of deaths increased from 28% in 1970 to a peak of 45% in 2013; completeness was lower after 2013 because of lags in reporting. Total deaths in children younger than 5 years decreased from 1970 to 2016, and slower decreases occurred at ages 5-24 years. By contrast, numbers of adult deaths increased in each 5-year age bracket above the age of 25 years. The distribution of annualised rates of change in age-specific mortality rate differed over the period 2000 to 2016 compared with earlier decades: increasing annualised rates of change were less frequent, although rising annualised rates of change still occurred in some locations, particularly for adolescent and younger adult age groups. Rates of stillbirths and under-5 mortality both decreased globally from 1970. Evidence for global convergence of death rates was mixed; although the absolute difference between age-standardised death rates narrowed between countries at the lowest and highest levels of SDI, the ratio of these death rates-a measure of relative inequality-increased slightly. There was a strong shift between 1970 and 2016 toward higher life expectancy, most noticeably at higher levels of SDI. Among countries with populations greater than 1 million in 2016, life expectancy at birth was highest for women in Japan, at 86·9 years (95% UI 86·7-87·2), and for men in Singapore, at 81·3 years (78·8-83·7) in 2016. Male life expectancy was generally lower than female life expectancy between 1970 and 2016, an

    Modélisation et validation des modèles de véhicules hybrides (étude de cas de la Toyota Prius)

    No full text
    PARIS-MINES ParisTech (751062310) / SudocSudocFranceF

    Dynamic modeling of the electro-mechanical configuration of the Toyota Hybrid System series/parallel power train

    No full text
    International audienceThe hybridization of the conventional thermal vehicles nowadays constitutes a paramount importance for car manufacturers, facing the challenge of minimizing the consumption of the road transport. Although hybrid power train technologies did not converge towards a single solution, series/parallel power trains with power-split electromechanical transmissions prove to be the most promising hybrid technology. In fact, these power trains show maximum power train overall efficiency and maximum fuel reduction in almost all driving conditions compared to the conventional and other hybrid power trains. This paper addresses the model and design of the electro-mechanical configuration of one of the most effective HEV power trains: case study of the 2nd generation Prius. It presents the simulation work of the overall operation of the Toyota Hybrid System (THS-II) of the Prius, and explores not only its power-split eCVT innovative transmission system but also its overall supervision controller for energy management. The kinematic and dynamic behaviors of the THS-II power train are explained based on the power-split aspect of its transmission through a planetary gear train. Then, the possible regular driving functionalities that result from its eCVT operation and the energy flow within its power train are outlined. A feed-forward dynamic model of the studied power train is next proposed, supervised by a rule-based engineering intuition controller. The energy consumption of the THS-II proposed model has been validated by comparing simulation results to published results on European, American and Japanese regulatory driving cycles

    Optimized energy management control for the Toyota Hybrid System using dynamic programming on a predicted route with short computation time

    No full text
    International audienceAmong the general problematic of the HEV power trains, the most critical point is the determination of the power-split ratio between the mechanical and the electrical paths, known as the energy management strategy (EMS). Many EMS are proposed in the literature, and can be grouped in two categories: the local optimization EMS and the global optimization EMS. The local optimization category corresponds to the EMS based on human expertise and the knowledge of the power train components efficiency maps. Thus, the local optimization EMS manages the power train operations by referring to predefined rules. The drawback of such strategies is that it brings an instantaneous fuel consumption optimization, and does not fully optimize the fuel consumption over the whole trip. Therefore, additional fuel savings are still possible. This paper presents an overall optimized predictive EMS for the Toyota Hybrid System (THS-II) power train of the Prius. The proposed EMS is based on Dynamic Programming (DP), where the prior knowledge of the route is required in order to predetermine the power-split ratio and optimize the fuel consumption for the whole predicted route. The DP EMS proposed for the THS-II power train is designed with a very short computation time, intended to be implemented in real-time applications. The potential of this DP-controller in reducing fuel consumption on regulatory cycles are computed and compared to a rule-based controller and to the Prius published fuel consumption results. Finally, the fuel reduction enhancements of the DP-controller are computed for real road tests achieved on a MY06 Prius in Ile-de-France, by comparing to the associated observed consumption measurements

    Analysis of heat pump performance in battery electric buses

    Get PDF
    International audienceBattery Electric Buses (BEB) driving range is one of the main challenges limiting their adoption at a massive scale. Heating and air conditioning of the bus cabin is an energy-intensive process that results in additional energy consumption from the sole onboard energy source. The limited capacity of the battery makes it crucial to quantify this load and study its impact on the bus range. Heat pumps (HP) are the main heating, ventilating and air conditioning technology deployed in electric buses due to their superior performance over electric resistance heaters. However, their performance witness major variations at different external temperatures and operating conditions such as air and refrigerant flow rates and compressor speed. This paper quantifies the thermal load in BEB and studies the HP performance at different weather and operating conditions. First, cabin thermal comfort conditions are set, and HP components technological constraints are presented. Then, a HP model is integrated into a BEB model to fulfill its thermal needs. Simulations are conducted at different external temperatures analyzing the HP performance. Moreover, this paper conducts a sensitivity analysis to study the effect of HP operating conditions on the Coefficient of Performance (COP) and energy consumption. The simulation shows that the compressor speed, the air recirculation rate and the mass flow rate of the air blown into the cabin have the most significant impact on the HP COP

    Methodology for TurboGenerator Systems Optimization in Electrified Powertrains

    No full text
    International audienc
    corecore