4 research outputs found

    Back to the future: Pacific walrus stress response and reproductive status in a changing Arctic

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 2016The Pacific walrus (Odobenus rosmarus divergens) is an iconic Arctic marine mammal that Alaska Natives rely on as a subsistence, economic, and cultural resource. A decrease in critical sea ice habitat and uncertain population numbers have led to walruses being listed as a candidate for the Endangered Species Act. However, there is no clear understanding of how walruses might be affected by climate change. The first objective of this study was to describe how bone steroid hormone concentrations relate to commonly used blubber and serum steroid hormone concentrations (i.e., cortisol, estradiol, progesterone and testosterone), because steroid hormones have not been extracted from marine mammal bone until now. Bone, blubber, and serum were collected from individual adult walruses (n = 34) harvested by Native Alaskan subsistence hunters during 2014 and 2015. Complete turnover of cortical bone in a walrus skeleton was estimated as ~33 years, approximately the lifetime of a walrus. Results showed bone and blubber steroid hormone concentrations were similar (P = 0.96, 0.51, 0.27 for cortisol, estradiol, and progesterone (males only), respectively), but not testosterone (males and females, P = 0.003) nor progesterone in blubber of female walruses (P = 0.007). Progesterone concentrations in males were significantly correlated between bone and blubber (R² = 0.51, P 200 calendar years before present (BP)), historical (n =135, 200 – 20 BP), and modern (n = 47, 2014 – 2015) time periods, but were also analyzed at a finer decadal (1830s – 2010s) scale. Walrus bone cortisol concentrations measured in modern-day walruses were similar to other time periods (P = 0.38, 0.07, for archaeological and historical time periods, respectively) indicating no increase in the stress response of walruses as a result of current sea ice conditions in the Arctic. Estradiol (females only), progesterone, and testosterone were significantly negatively correlated with walrus population estimates (P = 0.008, 0.003, <0.001, respectively). A negative correlation indicates that walrus population numbers are low when reproductive hormone concentrations are high, and population numbers are high, possibly at carrying capacity, when hormone concentrations are low. Data from the current decade (2014–2015) show that the current walrus population has lower reproductive hormone concentrations compared to times of rapid population increase. These data indicate the present-day walrus population may not be increasing, but is either experiencing low calf production and / or is near its carrying capacity. Overall, these data provide walrus management with insights into the physiological resiliency of walruses in response to arctic warming, and validate bone as a valuable tissue for monitoring long-term physiological changes in the walrus population.Chapter 1: General introduction -- Chapter 2: A tissue comparison of steroid hormones in bone, serum, and blubber of Pacific walruses -- Chapter 3: Steroid hormone concentrations in Pacific walrus bone reveal long-term changes in reproductive status and stress response over the last 3 millennia -- Chapter 4: General Conclusions

    Reading the biomineralized book of life: expanding otolith biogeochemical research and applications for fisheries and ecosystem-based management

    Get PDF
    AbstractChemical analysis of calcified structures continues to flourish, as analytical and technological advances enable researchers to tap into trace elements and isotopes taken up in otoliths and other archival tissues at ever greater resolution. Increasingly, these tracers are applied to refine age estimation and interpretation, and to chronicle responses to environmental stressors, linking these to ecological, physiological, and life-history processes. Here, we review emerging approaches and innovative research directions in otolith chemistry, as well as in the chemistry of other archival tissues, outlining their value for fisheries and ecosystem-based management, turning the spotlight on areas where such biomarkers can support decision making. We summarise recent milestones and the challenges that lie ahead to using otoliths and archival tissues as biomarkers, grouped into seven, rapidly expanding and application-oriented research areas that apply chemical analysis in a variety of contexts, namely: (1) supporting fish age estimation; (2) evaluating environmental stress, ecophysiology and individual performance; (3) confirming seafood provenance; (4) resolving connectivity and movement pathways; (5) characterising food webs and trophic interactions; (6) reconstructing reproductive life histories; and (7) tracing stock enhancement efforts. Emerging research directions that apply hard part chemistry to combat seafood fraud, quantify past food webs, as well as to reconcile growth, movement, thermal, metabolic, stress and reproductive life-histories provide opportunities to examine how harvesting and global change impact fish health and fisheries productivity. Ultimately, improved appreciation of the many practical benefits of archival tissue chemistry to fisheries and ecosystem-based management will support their increased implementation into routine monitoring. Graphical abstract</jats:p

    Reading the biomineralized book of life: expanding otolith biogeochemical research and applications for fisheries and ecosystem-based management

    No full text
    Chemical analysis of calcified structures continues to flourish, as analytical and technological advances enable researchers to tap into trace elements and isotopes taken up in otoliths and other archival tissues at ever greater resolution. Increasingly, these tracers are applied to refine age estimation and interpretation, and to chronicle responses to environmental stressors, linking these to ecological, physiological, and life-history processes. Here, we review emerging approaches and innovative research directions in otolith chemistry, as well as in the chemistry of other archival tissues, outlining their value for fisheries and ecosystem-based management, turning the spotlight on areas where such biomarkers can support decision making. We summarise recent milestones and the challenges that lie ahead to using otoliths and archival tissues as biomarkers, grouped into seven, rapidly expanding and application-oriented research areas that apply chemical analysis in a variety of contexts, namely: (1) supporting fish age estimation; (2) evaluating environmental stress, ecophysiology and individual performance; (3) confirming seafood provenance; (4) resolving connectivity and movement pathways; (5) characterising food webs and trophic interactions; (6) reconstructing reproductive life histories; and (7) tracing stock enhancement efforts. Emerging research directions that apply hard part chemistry to combat seafood fraud, quantify past food webs, as well as to reconcile growth, movement, thermal, metabolic, stress and reproductive life-histories provide opportunities to examine how harvesting and global change impact fish health and fisheries productivity. Ultimately, improved appreciation of the many practical benefits of archival tissue chemistry to fisheries and ecosystem-based management will support their increased implementation into routine monitoring
    corecore