57 research outputs found

    Novel Chikungunya Vaccine Candidate with an IRES-Based Attenuation and Host Range Alteration Mechanism

    Get PDF
    Chikungunya virus (CHIKV) is a reemerging mosquito-borne pathogen that has recently caused devastating urban epidemics of severe and sometimes chronic arthralgia. As with most other mosquito-borne viral diseases, control relies on reducing mosquito populations and their contact with people, which has been ineffective in most locations. Therefore, vaccines remain the best strategy to prevent most vector-borne diseases. Ideally, vaccines for diseases of resource-limited countries should combine low cost and single dose efficacy, yet induce rapid and long-lived immunity with negligible risk of serious adverse reactions. To develop such a vaccine to protect against chikungunya fever, we employed a rational attenuation mechanism that also prevents the infection of mosquito vectors. The internal ribosome entry site (IRES) from encephalomyocarditis virus replaced the subgenomic promoter in a cDNA CHIKV clone, thus altering the levels and host-specific mechanism of structural protein gene expression. Testing in both normal outbred and interferon response-defective mice indicated that the new vaccine candidate is highly attenuated, immunogenic and efficacious after a single dose. Furthermore, it is incapable of replicating in mosquito cells or infecting mosquitoes in vivo. This IRES-based attenuation platform technology may be useful for the predictable attenuation of any alphavirus

    Analyzing the Human Serum Antibody Responses to a Live Attenuated Tetravalent Dengue Vaccine Candidate

    Get PDF
    BACKGROUND: Dengue virus serotypes 1-4 (DENV-1-4) are the most common vector-borne viral pathogens of humans and the etiological agents of dengue fever and dengue hemorrhagic syndrome. A live-attenuated tetravalent dengue vaccine (TDV) developed by Takeda Vaccines has recently progressed to phase 3 safety and efficacy evaluation. METHODS: We analyzed the qualitative features of the neutralizing antibody (nAb) response induced in naive and DENV-immune individuals after TDV administration. Using DENV-specific human monoclonal antibodies (mAbs) and recombinant DENV displaying different serotype-specific Ab epitopes, we mapped the specificity of TDV-induced nAbs against DENV-1-3. RESULTS: Nearly all subjects had high levels of DENV-2-specific nAbs directed to epitopes centered on domain III of the envelope protein. In some individuals, the vaccine induced nAbs that tracked with a DENV-1-specific neutralizing epitope centered on domain I of the envelope protein. The vaccine induced binding Abs directed to a DENV-3 type-specific neutralizing epitope, but findings of mapping of DENV-3 type-specific nAbs were inconclusive. CONCLUSION: Here we provide qualitative measures of the magnitude and epitope specificity of the nAb responses to TDV. This information will be useful for understanding the performance of TDV in clinical trials and for identifying correlates of protective immunity

    The binding of chimeric peptides to GM1 ganglioside enables induction of antibody responses after intranasal immunization

    No full text
    International audienceWith a model peptide, the neutralizing epitope 50-75 of cholera toxin B subunit, two chimeric peptides were constructed. A T-cell epitope, the 174-187 peptide from the G protein of the respiratory syncytial virus, was co-linearly synthesized at the amino-(174-50) or carboxyl-terminus (50-174) of the 50-75 peptide. Although both chimeric peptides were equally immunogenic by the intraperitoneal route, the 50-174 peptide was more immunogenic than the 174-50 peptide by the intranasal (i.n.) route. Both chimeric peptides inhibited the binding of cholera toxin B subunit to GM1 ganglioside with the 50-174 peptide being more effective inhibitor than the 174-50 peptide. In addition, an effective priming of the immune system was achieved after the i.n. administration of immunogens. The observed unresponsiveness after the i.n. co-immunization with the 50-174 peptide and GM1 ganglioside emphasize the role of GM1 binding for the induction of an immune response after i.n. immunization

    A PEPTIDE MIMOTOPE OF HEPATITIC C VIRUS E2 PROTEIN IS IMMUNOGENIC IN MICE AND BLOCK HUMAN ANTI-HCV SERA

    No full text
    International audienceConformational B-cell epitopes on the HCV E2 protein recognised by human antibodies were characterised by use of a peptide mimotope named K1. K1 was identified by two HCV anti-E2 monoclonal antibodies (mAbs) following selection and purification of phage clones containing a 15-mer random peptide insert. Murine antisera to the mimotope K1 recognised the E2 protein. Five of eight human sera from patients who had cleared HCV recognised the K1 mimotope. Binding to E2 in four individuals with the capacity to block E2- CD81 interaction was inhibited by the mimotope K1. The results demonstrate that anti-E2 antibodies in sera from patients who have cleared HCV infection are directed against a conformational B-cell epitope on E2 that can be mimicked with linear synthetic peptides. These findings could have implications for vaccine design by employing linear mimotopes to direct B-cell responses against those specific E2 epitopes that may correlate with immunity

    Efficacy of a Trivalent Hand, Foot, and Mouth Disease Vaccine against Enterovirus 71 and Coxsackieviruses A16 and A6 in Mice

    No full text
    Hand, foot, and mouth disease (HFMD) has recently emerged as a major public health concern across the Asian-Pacific region. Enterovirus 71 (EV71) and Coxsackievirus A16 (CVA16) are the primary causative agents of HFMD, but other members of the Enterovirus A species, including Coxsackievirus A6 (CVA6), can cause disease. The lack of small animal models for these viruses have hampered the development of a licensed HFMD vaccine or antivirals. We have previously reported on the development of a mouse model for EV71 and demonstrated the protective efficacy of an inactivated EV71 vaccine candidate. Here, mouse-adapted strains of CVA16 and CVA6 were produced by sequential passage of the viruses through mice deficient in interferon (IFN) α/β (A129) and α/β and γ (AG129) receptors. Adapted viruses were capable of infecting 3 week-old A129 (CVA6) and 12 week-old AG129 (CVA16) mice. Accordingly, these models were used in active and passive immunization studies to test the efficacy of a trivalent vaccine candidate containing inactivated EV71, CVA16, and CVA6. Full protection from lethal challenge against EV71 and CVA16 was observed in trivalent vaccinated groups. In contrast, monovalent vaccinated groups with non-homologous challenges failed to cross protect. Protection from CVA6 challenge was accomplished through a passive transfer study involving serum raised against the trivalent vaccine. These animal models will be useful for future studies on HFMD related pathogenesis and the efficacy of vaccine candidates

    A novel MVA vectored Chikungunya virus vaccine elicits protective immunity in mice.

    No full text
    Chikungunya virus (CHIKV) is a re-emerging arbovirus associated with febrile illness often accompanied by rash and arthralgia that may persist for several years. Outbreaks are associated with high morbidity and create a public health challenge for countries affected. Recent outbreaks have occurred in both Europe and the Americas, suggesting CHIKV may continue to spread. Despite the sustained threat of the virus, there is no approved vaccine or antiviral therapy against CHIKV. Therefore, it is critical to develop a vaccine that is both well tolerated and highly protective.In this study, we describe the construction and characterization of a modified Vaccinia virus Ankara (MVA) virus expressing CHIKV E3 and E2 proteins (MVA-CHIK) that protected several mouse models from challenge with CHIKV. In particular, BALB/c mice were completely protected against viremia upon challenge with CHIKV after two doses of MVA-CHIK. Additionally, A129 mice (deficient in IFNα/β) were protected from viremia, footpad swelling, and mortality. While high anti-virus antibodies were elicited, low or undetectable levels of neutralizing antibodies were produced in both mouse models. However, passive transfer of MVA-CHIK immune serum to naïve mice did not protect against mortality, suggesting that antibodies may not be the main effectors of protection afforded by MVA-CHIK. Furthermore, depletion of CD4(+), but not CD8(+) T-cells from vaccinated mice resulted in 100% mortality, implicating the indispensable role of CD4(+) T-cells in the protection afforded by MVA-CHIK.The results presented herein demonstrate the potential of MVA to effectively express CHIKV E3-E2 proteins and generate protective immune responses. Our findings challenge the assumption that only neutralizing antibodies are effective in providing protection against CHIKV, and provides a framework for the development of novel, more effective vaccine strategies to combat CHIKV
    corecore