225 research outputs found
Design and control of SLIDER: an ultra-lightweight, knee-less, low-cost bipedal walking robot
Most state-of-the-art bipedal robots are designed to be highly anthropomorphic and therefore possess legs with knees. Whilst this facilitates more human-like locomotion, there are implementation issues that make walking with straight or near-straight legs difficult. Most bipedal robots have to move with a constant bend in the legs to avoid singularities at the knee joints, and to keep the centre of mass at a constant height for control purposes. Furthermore, having a knee on the leg increases the design complexity as well as the weight of the leg, hindering the robot’s performance in agile behaviours such as running and jumping. We present SLIDER, an ultra-lightweight, low-cost bipedal walking robot with a novel knee-less leg design. This nonanthropomorphic straight-legged design reduces the weight of the legs significantly whilst keeping the same functionality as anthropomorphic legs. Simulation results show that SLIDER’s low-inertia legs contribute to less vertical motion in the center of mass (CoM) than anthropomorphic robots during walking, indicating that SLIDER’s model is closer to the widely used Inverted Pendulum (IP) model. Finally, stable walking on flat terrain is demonstrated both in simulation and in the physical world, and feedback control is implemented to address challenges with the physical robot
Dietary Supplementation with Soluble Plantain Non-Starch Polysaccharides Inhibits Intestinal Invasion of Salmonella Typhimurium in the Chicken
Soluble fibres (non-starch polysaccharides, NSP) from edible plants but particularly plantain banana (Musa spp.), have been shown in vitro and ex vivo to prevent various enteric pathogens from adhering to, or translocating across, the human intestinal epithelium, a property that we have termed contrabiotic. Here we report that dietary plantain fibre prevents invasion of the chicken intestinal mucosa by Salmonella. In vivo experiments were performed with chicks fed from hatch on a pellet diet containing soluble plantain NSP (0 to 200 mg/d) and orally infected with S.Typhimurium 4/74 at 8 d of age. Birds were sacrificed 3, 6 and 10 d post-infection. Bacteria were enumerated from liver, spleen and caecal contents. In vitro studies were performed using chicken caecal crypts and porcine intestinal epithelial cells infected with Salmonella enterica serovars following pre-treatment separately with soluble plantain NSP and acidic or neutral polysaccharide fractions of plantain NSP, each compared with saline vehicle. Bacterial adherence and invasion were assessed by gentamicin protection assay. In vivo dietary supplementation with plantain NSP 50 mg/d reduced invasion by S.Typhimurium, as reflected by viable bacterial counts from splenic tissue, by 98.9% (95% CI, 98.1–99.7; P<0.0001). In vitro studies confirmed that plantain NSP (5–10 mg/ml) inhibited adhesion of S.Typhimurium 4/74 to a porcine epithelial cell-line (73% mean inhibition (95% CI, 64–81); P<0.001) and to primary chick caecal crypts (82% mean inhibition (95% CI, 75–90); P<0.001). Adherence inhibition was shown to be mediated via an effect on the epithelial cells and Ussing chamber experiments with ex-vivo human ileal mucosa showed that this effect was associated with increased short circuit current but no change in electrical resistance. The inhibitory activity of plantain NSP lay mainly within the acidic/pectic (homogalacturonan-rich) component. Supplementation of chick feed with plantain NSP was well tolerated and shows promise as a simple approach for reducing invasive salmonellosis
Recommended from our members
A randomized trial and novel SPR technique identifies altered lipoprotein-LDL receptor binding as a mechanism underlying elevated LDL-cholesterol in APOE4s
At a population level APOE4 carriers (~25% Caucasians) are at higher risk of cardiovascular diseases. The penetrance of genotype is however variable and influenced by dietary fat composition, with the APOE4 allele associated with greater LDL-cholesterol elevation in response to saturated fatty acids (SFA). The etiology of this greater responsiveness is unknown. Here a novel surface plasmon resonance technique (SPR) is developed and used, along with hepatocyte (with the liver being the main organ modulating lipoprotein metabolism and plasma lipid levels) uptake studies to establish the impact of dietary fatty acid composition on, lipoprotein-LDL receptor (LDLR) binding, and hepatocyte uptake, according to APOE genotype status. In men prospectively recruited according to APOE genotype (APOE3/3 common genotype, or APOE3/E4), triglyceride-rich lipoproteins (TRLs) were isolated at fasting and 4-6 h following test meals rich in SFA, unsaturated fat and SFA with fish oil. In APOE4s a greater LDLR binding affinity of postprandial TRL after SFA, and lower LDL binding and hepatocyte internalization, provide mechanisms for the greater LDL-cholesterol raising effect. The SPR technique developed may be used for the future study of the impact of genotype, and physiological and behavioral variables on lipoprotein metabolism
Nicotinic acetylcholine receptor variants associated with susceptibility to chronic obstructive pulmonary disease: a meta-analysis
<p>Abstract</p> <p>Background</p> <p>Only 10-15% of smokers develop chronic obstructive pulmonary disease (COPD) which indicates genetic susceptibility to the disease. Recent studies suggested an association between COPD and polymorphisms in <it>CHRNA </it>coding subunits of nicotinic acetylcholine receptor. Herein, we performed a meta-analysis to clarify the impact of <it>CHRNA </it>variants on COPD.</p> <p>Methods</p> <p>We searched Web of Knowledge and Medline from 1990 through June 2011 for COPD gene studies reporting variants on <it>CHRNA</it>. Pooled odds ratios (ORs) were calculated using the major allele or genotype as reference group.</p> <p>Results</p> <p>Among seven reported variants in <it>CHRNA</it>, rs1051730 was finally analyzed with sufficient studies. Totally 3460 COPD and 11437 controls from 7 individual studies were pooled-analyzed. A-allele of rs1051730 was associated with an increased risk of COPD regardless of smoking exposure (pooled OR = 1.26, 95% CI 1.18-1.34, p < 10<sup>-5</sup>). At the genotypic level, the ORs gradually increased per A-allele (OR = 1.27 and 1.50 for GA and AA respectively, p < 10<sup>-5</sup>). Besides, AA genotype exhibited an association with reduced FEV1% predicted (mean difference 3.51%, 95%CI 0.87-6.16%, p = 0.009) and increased risk of emphysema (OR 1.93, 95%CI 1.29-2.90, p = 0.001).</p> <p>Conclusions</p> <p>Our findings suggest that rs1051730 in <it>CHRNA </it>is a susceptibility variant for COPD, in terms of both airway obstruction and parenchyma destruction.</p
Effects of jump and balance training on knee kinematics and electromyography of female basketball athletes during a single limb drop landing: pre-post intervention study
<p>Abstract</p> <p>Background</p> <p>Some research studies have investigated the effects of anterior cruciate ligament (ACL) injury prevention programs on knee kinematics during landing tasks; however the results were different among the studies. Even though tibial rotation is usually observed at the time of ACL injury, the effects of training programs for knee kinematics in the horizontal plane have not yet been analyzed. The purpose of this study was to determine the effects of a jump and balance training program on knee kinematics including tibial rotation as well as on electromyography of the quadriceps and hamstrings in female athletes.</p> <p>Methods</p> <p>Eight female basketball athletes participated in the experiment. All subjects performed a single limb landing at three different times: the initial test, five weeks later, and one week after completing training. The jump and balance training program lasted for five weeks. Knee kinematics and simultaneous electromyography of the rectus femoris and Hamstrings before training were compared with those measured after completing the training program.</p> <p>Results</p> <p>After training, regarding the position of the knee at foot contact, the knee flexion angle for the Post-training trial (mean (SE): 24.4 (2.1) deg) was significantly larger than that for the Pre-training trial (19.3 (2.5) deg) (p < 0.01). The absolute change during landing in knee flexion for the Post-training trial (40.2 (1.9) deg) was significantly larger than that for the Pre-training trial (34.3 (2.5) deg) (p < 0.001). Tibial rotation and the knee varus/valgus angle were not significantly different after training. A significant increase was also found in the activity of the hamstrings 50 ms before foot contact (p < 0.05).</p> <p>Conclusions</p> <p>The jump and balance training program successfully increased knee flexion and hamstring activity of female athletes during landing, and has the possibility of producing partial effects to avoid the characteristic knee position observed in ACL injury, thereby preventing injury. However, the expected changes in frontal and transverse kinematics of the knee were not observed.</p
Differential neuromuscular training effects onACL injury risk factors in"high-risk" versus "low-risk" athletes
<p>Abstract</p> <p>Background</p> <p>Neuromuscular training may reduce risk factors that contribute to ACL injury incidence in female athletes. Multi-component, ACL injury prevention training programs can be time and labor intensive, which may ultimately limit training program utilization or compliance. The purpose of this study was to determine the effect of neuromuscular training on those classified as "high-risk" compared to those classified as "low-risk." The hypothesis was that high-risk athletes would decrease knee abduction moments while low-risk and control athletes would not show measurable changes.</p> <p>Methods</p> <p>Eighteen high school female athletes participated in neuromuscular training 3×/week over a 7-week period. Knee kinematics and kinetics were measured during a drop vertical jump (DVJ) test at pre/post training. External knee abduction moments were calculated using inverse dynamics. Logistic regression indicated maximal sensitivity and specificity for prediction of ACL injury risk using external knee abduction (25.25 Nm cutoff) during a DVJ. Based on these data, 12 study subjects (and 4 controls) were grouped into the high-risk (knee abduction moment >25.25 Nm) and 6 subjects (and 7 controls) were grouped into the low-risk (knee abduction <25.25 Nm) categories using mean right and left leg knee abduction moments. A mixed design repeated measures ANOVA was used to determine differences between athletes categorized as high or low-risk.</p> <p>Results</p> <p>Athletes classified as high-risk decreased their knee abduction moments by 13% following training (Dominant pre: 39.9 ± 15.8 Nm to 34.6 ± 9.6 Nm; Non-dominant pre: 37.1 ± 9.2 to 32.4 ± 10.7 Nm; p = 0.033 training X risk factor interaction). Athletes grouped into the low-risk category did not change their abduction moments following training (p > 0.05). Control subjects classified as either high or low-risk also did not significantly change from pre to post-testing.</p> <p>Conclusion</p> <p>These results indicate that "high-risk" female athletes decreased the magnitude of the previously identified risk factor to ACL injury following neuromuscular training. However, the mean values for the high-risk subjects were not reduced to levels similar to low-risk group following training. Targeting female athletes who demonstrate high-risk knee abduction loads during dynamic tasks may improve efficacy of neuromuscular training. Yet, increased training volume or more specific techniques may be necessary for high-risk athletes to substantially decrease ACL injury risk.</p
The genetics of chronic obstructive pulmonary disease
Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease caused by the interaction of genetic susceptibility and environmental influences. There is increasing evidence that genes link to disease pathogenesis and heterogeneity by causing variation in protease anti-protease systems, defence against oxidative stress and inflammation. The main methods of genomic research for complex disease traits are described, together with the genes implicated in COPD thus far, their roles in disease causation and the future for this area of investigation
Environment, Migratory Tendency, Phylogeny and Basal Metabolic Rate in Birds
Basal metabolic rate (BMR) represents the minimum maintenance energy requirement of an endotherm and has far-reaching consequences for interactions between animals and their environments. Avian BMR exhibits considerable variation that is independent of body mass. Some long-distance migrants have been found to exhibit particularly high BMR, traditionally interpreted as being related to the energetic demands of long-distance migration. Here we use a global dataset to evaluate differences in BMR between migrants and non-migrants, and to examine the effects of environmental variables. The BMR of migrant species is significantly higher than that of non-migrants. Intriguingly, while the elevated BMR of migrants on their breeding grounds may reflect the metabolic machinery required for long-distance movements, an alternative (and statistically stronger) explanation is their occupation of predominantly cold high-latitude breeding areas. Among several environmental predictors, average annual temperature has the strongest effect on BMR, with a 50% reduction associated with a 20°C gradient. The negative effects of temperature variables on BMR hold separately for migrants and non-migrants and are not due their different climatic associations. BMR in migrants shows a much lower degree of phylogenetic inertia. Our findings indicate that migratory tendency need not necessarily be invoked to explain the higher BMR of migrants. A weaker phylogenetic signal observed in migrants supports the notion of strong phenotypic flexibility in this group which facilitates migration-related BMR adjustments that occur above and beyond environmental conditions. In contrast to the findings of previous analyses of mammalian BMR, primary productivity, aridity or precipitation variability do not appear to be important environmental correlates of avian BMR. The strong effects of temperature-related variables and varying phylogenetic effects reiterate the importance of addressing both broad-scale and individual-scale variation for understanding the determinants of BMR
- …