1,388 research outputs found

    Mobile radio propagation prediction using ray tracing methods

    Get PDF
    The basic problem is to solve the two-dimensional scalar Helmholtz equation for a point source (the antenna) situated in the vicinity of an array of scatterers (such as the houses and any other relevant objects in 1 square km of urban environment). The wavelength is a few centimeters and the houses a few metres across, so there are three disparate length scales in the problem. The question posed by BT concerned ray counting on the assumptions that: (i) rays were subject to a reflection coefficient of about 0.5 when bouncing off a house wall and (ii) that diffraction at corners reduced their energy by 90%. The quantity of particular interest was the number of rays that need to be accounted for at any particular point in order for those neglected to only contribute 10% of the field at that point; a secondary question concerned the use of rays to predict regions where the field was less than 1% of that in the region directly illuminated by the antenna. The progress made in answering these two questions is described in the next two sections and possibly useful representations of the solution of the Helmholtz equations in terms other than rays are given in the final section

    Chaotic Properties of Dilute Two and Three Dimensional Random Lorentz Gases II: Open Systems

    Full text link
    We calculate the spectrum of Lyapunov exponents for a point particle moving in a random array of fixed hard disk or hard sphere scatterers, i.e. the disordered Lorentz gas, in a generic nonequilibrium situation. In a large system which is finite in at least some directions, and with absorbing boundary conditions, the moving particle escapes the system with probability one. However, there is a set of zero Lebesgue measure of initial phase points for the moving particle, such that escape never occurs. Typically, this set of points forms a fractal repeller, and the Lyapunov spectrum is calculated here for trajectories on this repeller. For this calculation, we need the solution of the recently introduced extended Boltzmann equation for the nonequilibrium distribution of the radius of curvature matrix and the solution of the standard Boltzmann equation. The escape-rate formalism then gives an explicit result for the Kolmogorov Sinai entropy on the repeller.Comment: submitted to Phys Rev

    X-ray image reconstruction from a diffraction pattern alone

    Full text link
    A solution to the inversion problem of scattering would offer aberration-free diffraction-limited 3D images without the resolution and depth-of-field limitations of lens-based tomographic systems. Powerful algorithms are increasingly being used to act as lenses to form such images. Current image reconstruction methods, however, require the knowledge of the shape of the object and the low spatial frequencies unavoidably lost in experiments. Diffractive imaging has thus previously been used to increase the resolution of images obtained by other means. We demonstrate experimentally here a new inversion method, which reconstructs the image of the object without the need for any such prior knowledge.Comment: 5 pages, 3 figures, improved figures and captions, changed titl

    Electric arc problem

    Get PDF
    This problem was concerned with the behaviour of an electric arc as the current supplied to the arc passed through zero. We sought to establish a model that predicts the conditions under which the arc was extinguished. During the study group we attempted to show how an equation of state could be derived by proposing that the arc should be in thermal equilibrium with the surrounding gas. The behaviour of the system as the current goes to zero was examined but no firm conclusions could be draw

    Deconstructing Decoherence

    Get PDF
    The study of environmentally induced superselection and of the process of decoherence was originally motivated by the search for the emergence of classical behavior out of the quantum substrate, in the macroscopic limit. This limit, and other simplifying assumptions, have allowed the derivation of several simple results characterizing the onset of environmentally induced superselection; but these results are increasingly often regarded as a complete phenomenological characterization of decoherence in any regime. This is not necessarily the case: The examples presented in this paper counteract this impression by violating several of the simple ``rules of thumb''. This is relevant because decoherence is now beginning to be tested experimentally, and one may anticipate that, in at least some of the proposed applications (e.g., quantum computers), only the basic principle of ``monitoring by the environment'' will survive. The phenomenology of decoherence may turn out to be significantly different.Comment: 13 two-column pages, 3 embedded figure

    Toroidal modelling of plasma response and RMP field penetration

    Get PDF
    The penetration dynamics of the resonant magnetic perturbation (RMP) field is sim- ulated in the full toroidal geometry, under realistic plasma conditions in MAST experiments. The physics associated with several aspects of the RMP penetration - the plasma response and rotational screening, the resonant and non-resonant torques and the toroidal momentum balance - are highlighted. In particular, the plasma response is found to significantly amplify the non-resonant component of the RMP field for some of the MAST plasmas. A fast rotating plasma, in response to static external magnetic fields, experiences a more distributed electro- magnetic torque due to the resonance with continuum waves in the plasma. At fast plasma flow (such as for the MAST plasma), the electromagnetic torque is normally dominant over the neoclassical toroidal viscous (NTV) torque. However, at sufficiently slow plasma flow, the NTV torque can play a significant role in the toroidal momentum balance, thanks to the precession drift resonance enhanced, so called superbanana plateau regime

    Guidance for Restarting Inflammatory Bowel Disease Therapy in Patients Who Withheld Immunosuppressant Medications During COVID-19

    Get PDF
    Patients with inflammatory bowel diseases [IBD] are frequently treated with immunosuppressant medications. During the coronavirus disease 2019 [COVID-19] pandemic, recommendations for IBD management have included that patients should stay on their immunosuppressant medications if they are not infected with the severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2], but to temporarily hold these medications if symptomatic with COVID-19 or asymptomatic but have tested positive for SARS-CoV-2. As more IBD patients are infected globally, it is important to also understand how to manage IBD medications during convalescence while an individual with IBD is recovering from COVID-19. In this review, we address the differences between a test-based versus a symptoms-based strategy as related to COVID-19, and offer recommendations on when it is appropriate to consider restarting IBD therapy in patients testing positive for SARS-CoV-2 or with clinical symptoms consistent with COVID-19. In general, we recommend a symptoms-based approach, due to the current lack of confidence in the accuracy of available testing and the clinical significance of prolonged detection of virus via molecular testing

    Turbulent diffusion and drift in galactic magnetic fields and the explanation of the knee in the cosmic ray spectrum

    Full text link
    We reconsider the scenario in which the knee in the cosmic ray spectrum is explained as due to a change in the escape mechanism of cosmic rays from the Galaxy from one dominated by transverse diffusion to one dominated by drifts. We solve the diffusion equations adopting realistic galactic field models and using diffusion coefficients appropriate for strong turbulence (with a Kolmogorov spectrum of fluctuations) and consistent with the assumed magnetic fields. We show that properly taking into account these effects leads to a natural explanation of the knee in the spectrum, and a transition towards a heavier composition above the knee is predicted.Comment: 17 pp., 6 figures; revised version with minor changes. To appear in JHE

    Negatively Charged Excitons and Photoluminescence in Asymmetric Quantum Well

    Full text link
    We study photoluminescence (PL) of charged excitons (X−X^-) in narrow asymmetric quantum wells in high magnetic fields B. The binding of all X−X^- states strongly depends on the separation δ\delta of electron and hole layers. The most sensitive is the ``bright'' singlet, whose binding energy decreases quickly with increasing δ\delta even at relatively small B. As a result, the value of B at which the singlet--triplet crossing occurs in the X−X^- spectrum also depends on δ\delta and decreases from 35 T in a symmetric 10 nm GaAs well to 16 T for δ=0.5\delta=0.5 nm. Since the critical values of δ\delta at which different X−X^- states unbind are surprisingly small compared to the well width, the observation of strongly bound X−X^- states in an experimental PL spectrum implies virtually no layer displacement in the sample. This casts doubt on the interpretation of PL spectra of heterojunctions in terms of X−X^- recombination
    • …
    corecore