5,083 research outputs found

    On the molecules of numerical semigroups, Puiseux monoids, and Puiseux algebras

    Full text link
    A molecule is a nonzero non-unit element of an integral domain (resp., commutative cancellative monoid) having a unique factorization into irreducibles (resp., atoms). Here we study the molecules of Puiseux monoids as well as the molecules of their corresponding semigroup algebras, which we call Puiseux algebras. We begin by presenting, in the context of numerical semigroups, some results on the possible cardinalities of the sets of molecules and the sets of reducible molecules (i.e., molecules that are not irreducibles/atoms). Then we study the molecules in the more general context of Puiseux monoids. We construct infinitely many non-isomorphic atomic Puiseux monoids all whose molecules are atoms. In addition, we characterize the molecules of Puiseux monoids generated by rationals with prime denominators. Finally, we turn to investigate the molecules of Puiseux algebras. We provide a characterization of the molecules of the Puiseux algebras corresponding to root-closed Puiseux monoids. Then we use such a characterization to find an infinite class of Puiseux algebras with infinitely many non-associated reducible molecules.Comment: 21 pages, 2 figure

    Eddy current damper for the labshare remote laboratory shake table rig

    Full text link
    The design and performance of an eddy current damper for the Labshare remotely operated "Shake Table" multi-storey building vibration rig is described. The damper comprises stationary E-cores on either side of a copper plate attached to each storey. An approximate formula for the damper retarding force F is derived, of the form F = -kuI2 for plate velocity u and E-core current I, and a criterion for its validity is established in terms of the magnetic Reynolds number. A close fit to measurements of the force using a load cell is obtained for k = 0.401 N/(ms-1A2). This was about 12% lower than the force determined by three-dimensional (3D) finite element analysis (FEA) using ANSYS 12.1, but the error can be attributed to manufacturing imperfections. Students can use the force formula in their investigation of closed-loop control of the Shake Table vibration. More generally, a formula for the force constant k can be used for the approximate design of any similar E-core damper

    Probing microwave fields and enabling in-situ experiments in a transmission electron microscope.

    Get PDF
    A technique is presented whereby the performance of a microwave device is evaluated by mapping local field distributions using Lorentz transmission electron microscopy (L-TEM). We demonstrate the method by measuring the polarisation state of the electromagnetic fields produced by a microstrip waveguide as a function of its gigahertz operating frequency. The forward and backward propagating electromagnetic fields produced by the waveguide, in a specimen-free experiment, exert Lorentz forces on the propagating electron beam. Importantly, in addition to the mapping of dynamic fields, this novel method allows detection of effects of microwave fields on specimens, such as observing ferromagnetic materials at resonance

    Carbon sequestration and biodiversity following 18 years of active tropical forest restoration

    Get PDF
    Vast areas of degraded tropical forest, combined with increasing interest in mitigating climate change and conserving biodiversity, demonstrate the potential value of restoring tropical forest. However, there is a lack of long-term studies assessing active management for restoration. Here we investigate Above-Ground Biomass (AGB), forest structure, and biodiversity, before degradation (in old-growth forest), after degradation (in abandoned agricultural savanna grassland), and within a forest that is actively being restored in Kibale National Park, Uganda. In 1995 degraded land in Kibale was protected from fire and replanted with native seedlings (39 species) at a density of 400 seedlings ha-1. Sixty-five plots (50 m × 10 m) were established in restoration areas in 2005 and 50 of these were re-measured in 2013, allowing changes to be assessed over 18 years. Degraded plots have an Above Ground Biomass (AGB) of 5.1 Mg dry mass ha-1, of which 80% is grass. By 2005 AGB of trees ≄10 cm DBH was 9.5 Mg ha-1, increasing to 40.6 Mg ha-1 by 2013, accumulating at a rate of 3.9 Mg ha-1 year-1. A total of 153 planted individuals ha-1 (38%) remained by 2013, contributing 28.9 Mg ha-1 (70%) of total AGB. Eighteen years after restoration, AGB in the plots was 12% of old-growth (419 Mg ha-1). If current accumulation rates continue restoration forest would reach old-growth AGB in a further 96 years. Biodiversity of degraded plots prior to restoration was low with no tree species and 2 seedling species per sample plot (0.05 ha). By 2005 restoration areas had an average of 3 tree and 3 seedling species per sample plot, increasing to 5 tree and 9 seedling species per plot in 2013. However, biodiversity was still significantly lower than old-growth forest, at 8 tree and 16 seedling species in an equivalent area. The results suggest that forest restoration is beneficial for AGB accumulation with planted stems storing the majority of AGB. Changes in biodiversity appear slower; possibly due to low stem turnover. Overall this restoration treatment is an effective means of restoring degraded land in the area, as can be seen from the lack of regeneration in degraded plots, which remain low-AGB and diversity, largely due to the impacts of fire and competition with grasses

    The equivalence of numbers: The social value of avoiding health decline: An experimental web-based study

    Get PDF
    BACKGROUND: Health economic analysis aimed at informing policy makers and supporting resource allocation decisions has to evaluate not only improvements in health but also avoided decline. Little is known however, whether the "direction" in which changes in health are experienced is important for the public in prioritizing among patients. This experimental study investigates the social value people place on avoiding (further) health decline when directly compared to curative treatments in resource allocation decisions. METHODS: 127 individuals completed an interactive survey that was published in the World Wide Web. They were confronted with a standard gamble (SG) and three person trade-off tasks, either comparing improvements in health (PTO-Up), avoided decline (PTO-Down), or both, contrasting health changes of equal magnitude differing in the direction in which they are experienced (PTO-WAD). Finally, a direct priority ranking of various interventions was obtained. RESULTS: Participants strongly prioritized improving patients' health rather than avoiding decline. The mean substitution rate between health improvements and avoided decline (WAD) ranged between 0.47 and 0.64 dependent on the intervention. Weighting PTO values according to the direction in which changes in health are experienced improved their accuracy in predicting a direct prioritization ranking. Health state utilities obtained by the standard gamble method seem not to reflect social values in resource allocation contexts. CONCLUSION: Results suggest that the utility of being cured of a given health state might not be a good approximation for the societal value of avoiding this health state, especially in cases of competition between preventive and curative interventions

    Stellar winds from Massive Stars

    Get PDF
    We review the various techniques through which wind properties of massive stars - O stars, AB supergiants, Luminous Blue Variables (LBVs), Wolf-Rayet (WR) stars and cool supergiants - are derived. The wind momentum-luminosity relation (e.g. Kudritzki et al. 1999) provides a method of predicting mass-loss rates of O stars and blue supergiants which is superior to previous parameterizations. Assuming the theoretical sqrt(Z) metallicity dependence, Magellanic Cloud O star mass-loss rates are typically matched to within a factor of two for various calibrations. Stellar winds from LBVs are typically denser and slower than equivalent B supergiants, with exceptional mass-loss rates during giant eruptions Mdot=10^-3 .. 10^-1 Mo/yr (Drissen et al. 2001). Recent mass-loss rates for Galactic WR stars indicate a downward revision of 2-4 relative to previous calibrations due to clumping (e.g. Schmutz 1997), although evidence for a metallicity dependence remains inconclusive (Crowther 2000). Mass-loss properties of luminous (> 10^5 Lo) yellow and red supergiants from alternative techniques remain highly contradictory. Recent Galactic and LMC results for RSG reveal a large scatter such that typical mass-loss rates lie in the range 10^-6 .. 10^-4 Mo/yr, with a few cases exhibiting 10^-3 Mo/yr.Comment: 16 pages, 2 figures, Review paper to appear in Proc `The influence of binaries on stellar population studies', Brussels, Aug 2000 (D. Vanbeveren ed.), Kluwe

    A random cell motility gradient downstream of FGF controls elongation of amniote embryos

    Get PDF
    Vertebrate embryos are characterized by an elongated antero-posterior (AP) body axis, which forms by progressive cell deposition from a posterior growth zone in the embryo. Here, we used tissue ablation in the chicken embryo to demonstrate that the caudal presomitic mesoderm (PSM) has a key role in axis elongation. Using time-lapse microscopy, we analysed the movements of fluorescently labelled cells in the PSM during embryo elongation, which revealed a clear posterior-to-anterior gradient of cell motility and directionality in the PSM. We tracked the movement of the PSM extracellular matrix in parallel with the labelled cells and subtracted the extracellular matrix movement from the global motion of cells. After subtraction, cell motility remained graded but lacked directionality, indicating that the posterior cell movements associated with axis elongation in the PSM are not intrinsic but reflect tissue deformation. The gradient of cell motion along the PSM parallels the fibroblast growth factor (FGF)/mitogen-activated protein kinase (MAPK) gradient1, which has been implicated in the control of cell motility in this tissue2. Both FGF signalling gain- and loss-of-function experiments lead to disruption of the motility gradient and a slowing down of axis elongation. Furthermore, embryos treated with cell movement inhibitors (blebbistatin or RhoK inhibitor), but not cell cycle inhibitors, show a slower axis elongation rate. We propose that the gradient of random cell motility downstream of FGF signalling in the PSM controls posterior elongation in the amniote embryo. Our data indicate that tissue elongation is an emergent property that arises from the collective regulation of graded, random cell motion rather than by the regulation of directionality of individual cellular movements

    Are white storks addicted to junk food? Impacts of landfill use on the movement and behaviour of resident white storks (Ciconia ciconia) from a partially migratory population

    Get PDF
    Background: The migratory patterns of animals are changing in response to global environmental change with many species forming resident populations in areas where they were once migratory. The white stork (Ciconia ciconia) was wholly migratory in Europe but recently guaranteed, year-round food from landfill sites has facilitated the establishment of resident populations in Iberia. In this study 17 resident white storks were fitted with GPS/GSM data loggers (including accelerometer) and tracked for 9.1 ± 3.7 months to quantify the extent and consistency of landfill attendance by individuals during the non-breeding and breeding seasons and to assess the influence of landfill use on daily distances travelled, percentage of GPS fixes spent foraging and non-landfill foraging ranges. Results: Resident white storks used landfill more during non-breeding (20.1 % ± 2.3 of foraging GPS fixes) than during breeding (14.9 % ± 2.2). Landfill attendance declined with increasing distance between nest and landfill in both seasons. During non-breeding a large percentage of GPS fixes occurred on the nest throughout the day (27 % ± 3.0 of fixes) in the majority of tagged storks. This study provides first confirmation of year-round nest use by resident white storks. The percentage of GPS fixes on the nest was not influenced by the distance between nest and the landfill site. Storks travelled up to 48.2 km to visit landfills during non-breeding and a maximum of 28.1 km during breeding, notably further than previous estimates. Storks nesting close to landfill sites used landfill more and had smaller foraging ranges in non-landfill habitat indicating higher reliance on landfill. The majority of non-landfill foraging occurred around the nest and long distance trips were made specifically to visit landfill. Conclusions: The continuous availability of food resources on landfill has facilitated year-round nest use in white storks and is influencing their home ranges and movement behaviour. White storks rely on landfill sites for foraging especially during the non-breeding season when other food resources are scarcer and this artificial food supplementation probably facilitated the establishment of resident populations. The closure of landfills, as required by EU Landfill Directives, will likely cause dramatic impacts on white stork populations

    Chirped pulse Raman amplification in warm plasma: towards controlling saturation

    Get PDF
    Stimulated Raman backscattering in plasma is potentially an efficient method of amplifying laser pulses to reach exawatt powers because plasma is fully broken down and withstands extremely high electric fields. Plasma also has unique nonlinear optical properties that allow simultaneous compression of optical pulses to ultra-short durations. However, current measured efficiencies are limited to several percent. Here we investigate Raman amplification of short duration seed pulses with different chirp rates using a chirped pump pulse in a preformed plasma waveguide. We identify electron trapping and wavebreaking as the main saturation mechanisms, which lead to spectral broadening and gain saturation when the seed reaches several millijoules for durations of 10's - 100's fs for 250 ps, 800 nm chirped pump pulses. We show that this prevents access to the nonlinear regime and limits the efficiency, and interpret the experimental results using slowly-varying-amplitude, current-averaged particle-in-cell simulations. We also propose methods for achieving higher efficiencies.close0

    Effect of Resting Patterns of Tamarins (Saguinus fuscicollis and Saguinus mystax) on the Spatial Distribution of Seeds and Seedling Recruitment

    Get PDF
    The spatial distributions of dispersed seeds have important evolutionary consequences for plants. Repeated defecations in sites frequently used by seed dispersers can result in high seed concentrations. We observed the resting behavior of a mixed-species group of tamarins in Peru and recorded the occurrence of seed dispersal (over 8 mo) and seed fate (over 11–22 mo) to determine whether the location and use of resting sites influenced the spatial distribution of dispersed seeds and seedlings. The tamarins rested mostly on trees (Saguinus fuscicollis: 60.6%, S. mystax: 89.2%) and dead trunks (S. fuscicollis: 24.4%) and used 61% of their resting sites repeatedly. During both the dry and wet seasons, tamarins dispersed significantly more seeds within resting areas (0.00662 and 0.00424 seeds/m2, respectively) than outside them (0.00141 and 0.00181 seeds/m2). Seed survival and seedling recruitment did not differ significantly between resting and other areas, resulting in a higher seedling concentration around the resting sites. Seed density did not increase with the duration or the frequency of use of the resting sites but did increase when we pooled the seasonal resting sites together in 50 m × 50 m quadrats, ultimately causing a clumped distribution of dispersed seeds. The use of resting sites in secondary forest, particularly during the dry season, allows the creation of seedling recruitment centers for species coming from the primary forest. Our findings show that tamarin resting behavior affects the spatial distribution of dispersed seeds and seedlings, and their resting sites play an important role in plant diversity maintenance and facilitate forest regeneration in degraded areas
    • 

    corecore