32 research outputs found
Divergent Roles of p75NTR and Trk Receptors in BDNF's Effects on Dendritic Spine Density and Morphology
Activation of TrkB receptors by brain-derived neurotrophic factor (BDNF) followed by MAPK/ERK signaling increases dendritic spine density and the proportion of mature spines in hippocampal CA1 pyramidal neurons. Considering the opposing actions of p75NTR and Trk receptors in several BDNF actions on CNS neurons, we tested whether these receptors also have divergent actions on dendritic spine density and morphology. A function-blocking anti-p75NTR antibody (REX) did not affect spine density by itself but it prevented BDNF's effect on spine density. Intriguingly, REX by itself increased the proportion of immature spines and prevented BDNF's effect on spine morphology. In contrast, the Trk receptor inhibitor k-252a increased spine density by itself, and prevented BDNF from further increasing spine density. However, most of the spines in k-252a-treated slices were of the immature type. These effects of k-252a on spine density and morphology required neuronal activity because they were prevented by TTX. These divergent BDNF actions on spine density and morphology are reminiscent of opposing functional signaling by p75NTR and Trk receptors and reveal an unexpected level of complexity in the consequences of BDNF signaling on dendritic morphology
HDAC activity is required for BDNF to increase quantal neurotransmitter release and dendritic spine density in CA1 pyramidal neurons
Molecular mechanisms involved in the strengthening and formation of synapses include the activation and repression of specific genes or subsets of genes by epigenetic modifications that do not alter the genetic code itself. Chromatin modifications mediated by histone acetylation have been shown to be critical for synaptic plasticity at hippocampal excitatory synapses and hippocampal-dependent memory formation. Considering that brain-derived neurotrophic factor (BDNF) plays an important role in synaptic plasticity and behavioral adaptations, it is not surprising that regulation of this gene is subject to histone acetylation changes during synaptic plasticity and hippocampal-dependent memory formation. Whether the effects of BDNF on dendritic spines and quantal transmitter release require histone modifications remains less known. By using two different inhibitors of histone deacetylases (HDACs), we describe here that their activity is required for BDNF to increase dendritic spine density and excitatory quantal transmitter release onto CA1 pyramidal neurons in hippocampal slice cultures. These results suggest that histone acetylation/deacetylation is a critical step in the modulation of hippocampal synapses by BDNF. Thus, mechanisms ofepigenetic modulation of synapse formation and function are novel targets to consider for the amelioration of symptoms of intellectual disabilities and neurodegenerative disorders associated with cognitive and memory deficits. © 2011 Wiley Periodicals, Inc.Fil: Calfa, Gaston Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Farmacología Experimental de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Farmacología Experimental de Córdoba; Argentina. University of Alabama at Birmingahm; Estados Unidos. The University of Alabama at Birmingham. Civitan International Research Center. Department of Neurobiology; Estados UnidosFil: Chapleau, Christopher A.. University of Alabama at Birmingahm; Estados Unidos. The University of Alabama at Birmingham. Civitan International Research Center. Department of Neurobiology; Estados UnidosFil: Campbell, Susan. The University of Alabama at Birmingham. Civitan International Research Center. Department of Neurobiology; Estados Unidos. University of Alabama at Birmingahm; Estados UnidosFil: Inoue, Takafumi. Waseda University. Faculty of Science and Engineering. Department of Life Science and Medical Bioscience; JapónFil: Morse, Sarah J.. The University of Alabama at Birmingham. Civitan International Research Center. Department of Neurobiology; Estados Unidos. University of Alabama at Birmingahm; Estados UnidosFil: Lubin, Farah D.. University of Alabama at Birmingahm; Estados Unidos. The University of Alabama at Birmingham. Civitan International Research Center. Department of Neurobiology; Estados UnidosFil: Pozzo-Miller, Lucas. The University of Alabama at Birmingham. Civitan International Research Center. Department of Neurobiology; Estados Unidos. University of Alabama at Birmingahm; Estados Unido
Modulation of dendritic spine development and plasticity by BDNF and vesicular trafficking: fundamental roles in neurodevelopmental disorders associated with mental retardation and autism
The process of axonal and dendritic development establishes the synaptic circuitry of the central nervous system (CNS) and is the result of interactions between intrinsic molecular factors and the external environment. One growth factor that has a compelling function in neuronal development is the neurotrophin brain-derived neurotrophic factor (BDNF). BDNF participates in axonal and dendritic differentiation during embryonic stages of neuronal development, as well as in the formation and maturation of dendritic spines during postnatal development. Recent studies have also implicated vesicular trafficking of BDNF via secretory vesicles, and both secretory and endosomal trafficking of vesicles containing synaptic proteins, such as neurotransmitter and neurotrophin receptors, in the regulation of axonal and dendritic differentiation, and in dendritic spine morphogenesis. Several genes that are either mutated or deregulated in neurodevelopmental disorders associated with mental retardation have now been identified, and several mouse models of these disorders have been generated and characterized. Interestingly, abnormalities in dendritic and synaptic structure are consistently observed in human neurodevelopmental disorders associated with mental retardation, and in mouse models of these disorders as well. Abnormalities in dendritic and synaptic differentiation are thought to underlie altered synaptic function and network connectivity, thus contributing to the clinical outcome. Here, we review the roles of BDNF and vesicular trafficking in axonal and dendritic differentiation in the context of dendritic and axonal morphological impairments commonly observed in neurodevelopmental disorders associated with mental retardation
Insulinotropic treatments exacerbate metabolic syndrome in mice lacking MeCP2 function
Rett syndrome (RTT), an X-linked postnatal disorder, results from mutations in Methyl CpG-binding protein 2 (MECP2). Survival and breathing in Mecp2NULL/Y animals are improved by an N-terminal tripeptide of insulin-like growth factor I (IGF-I) treatment. We determined that Mecp2NULL/Y animals also have a metabolic syndrome and investigated whether IGF-I treatment might improve this phenotype. Mecp2NULL/Y mice were treated with a full-length IGF-I modified with the addition of polyethylene glycol (PEG-IGF-I), which improves pharmacological properties. Low-dose PEG-IGF-I treatment slightly improved lifespan and heart rate in Mecp2NULL/Y mice; however, high-dose PEG-IGF-I decreased lifespan. To determine whether insulinotropic off-target effects of PEG-IGF-I caused the detrimental effect, we treated Mecp2NULL/Y mice with insulin, which also decreased lifespan. Thus, the clinical benefit of IGF-I treatment in RTT may critically depend on the dose used, and caution should be taken when initiating clinical trials with these compounds because the beneficial therapeutic window is narrow
Recommended from our members
Erratum to “Detection of rarely identified multiple mutations inMECP2gene do not contribute to enhanced severity in Rett syndrome”, Am J Med Genet Part A 161A:1638-1646
Recommended from our members
Erratum to “Detection of rarely identified multiple mutations inMECP2gene do not contribute to enhanced severity in Rett syndrome”, Am J Med Genet Part A 161A:1638-1646
Cdk5 Is Essential for Amphetamine to Increase Dendritic Spine Density in Hippocampal Pyramidal Neurons
Psychostimulant drugs of abuse increase dendritic spine density in reward centers of the brain. However, little is known about their effects in the hippocampus, where activity-dependent changes in the density of dendritic spine are associated with learning and memory. Recent reports suggest that Cdk5 plays an important role in drug addiction, but its role in psychostimulant’s effects on dendritic spines in hippocampus remain unknown. We used in vivo and in vitro approaches to demonstrate that amphetamine increases dendritic spine density in pyramidal neurons of the hippocampus. Primary cultures and organotypic slice cultures were used for cellular, molecular, pharmacological and biochemical analyses of the role of Cdk5/p25 in amphetamine-induced dendritic spine formation. Amphetamine (two-injection protocol) increased dendritic spine density in hippocampal neurons of thy1-green fluorescent protein (GFP) mice, as well as in hippocampal cultured neurons and organotypic slice cultures. Either genetic or pharmacological inhibition of Cdk5 activity prevented the amphetamine–induced increase in dendritic spine density. Amphetamine also increased spine density in neurons overexpressing the strong Cdk5 activator p25. Finally, inhibition of calpain, the protease necessary for the conversion of p35 to p25, prevented amphetamine’s effect on dendritic spine density. We demonstrate, for the first time, that amphetamine increases the density of dendritic spine in hippocampal pyramidal neurons in vivo and in vitro. Moreover, we show that the Cdk5/p25 signaling and calpain activity are both necessary for the effect of amphetamine on dendritic spine density. The identification of molecular mechanisms underlying psychostimulant effects provides novel and promising therapeutic approaches for the treatment of drug addiction