76 research outputs found

    Nonperturbative Effects in Gluon Radiation and Photoproduction of Quark Pairs

    Get PDF
    We introduce a nonperturbative interaction for light-cone fluctuations containing quarks and gluons. The qˉq\bar qq interaction squeezes the transverse size of these fluctuations in the photon and one does not need to simulate this effect via effective quark masses. The strength of this interaction is fixed by data. Data on diffractive dissociation of hadrons and photons show that the nonperturbative interaction of gluons is much stronger. We fix the parameters for the nonperturbative quark-gluon interaction by data for diffractive dissociation to large masses (triple-Pomeron regime). This allows us to predict nuclear shadowing for gluons which turns out to be not as strong as perturbative QCD predicts. We expect a delayed onset of gluon shadowing at x102x \leq 10^{-2} shadowing of quarks. Gluon shadowing turns out to be nearly scale invariant up to virtualities Q24GeV2Q^2\sim 4 GeV^2 due to presence of a semihard scale characterizing the strong nonperturbative interaction of gluons. We use the same concept to improve our description of gluon bremsstrahlung which is related to the distribution function for a quark-gluon fluctuation and the interaction cross section of a qˉqG\bar qqG fluctuation with a nucleon. We expect the nonperturbative interaction to suppress dramatically the gluon radiation at small transverse momenta compared to perturbative calculations.Comment: 58 pages of Latex including 11 figures. Shadowing for soft gluons and Fig. 6 are added as well as a few reference

    Future and potential spending on health 2015-40: Development assistance for health, and government, prepaid private, and out-of-pocket health spending in 184 countries

    Get PDF
    Background: The amount of resources, particularly prepaid resources, available for health can affect access to health care and health outcomes. Although health spending tends to increase with economic development, tremendous variation exists among health financing systems. Estimates of future spending can be beneficial for policy makers and planners, and can identify financing gaps. In this study, we estimate future gross domestic product (GDP), all-sector government spending, and health spending disaggregated by source, and we compare expected future spending to potential future spending. Methods: We extracted GDP, government spending in 184 countries from 1980-2015, and health spend data from 1995-2014. We used a series of ensemble models to estimate future GDP, all-sector government spending, development assistance for health, and government, out-of-pocket, and prepaid private health spending through 2040. We used frontier analyses to identify patterns exhibited by the countries that dedicate the most funding to health, and used these frontiers to estimate potential health spending for each low-income or middle-income country. All estimates are inflation and purchasing power adjusted. Findings: We estimated that global spending on health will increase from US9.21trillionin2014to9.21 trillion in 2014 to 24.24 trillion (uncertainty interval [UI] 20.47-29.72) in 2040. We expect per capita health spending to increase fastest in upper-middle-income countries, at 5.3% (UI 4.1-6.8) per year. This growth is driven by continued growth in GDP, government spending, and government health spending. Lower-middle income countries are expected to grow at 4.2% (3.8-4.9). High-income countries are expected to grow at 2.1% (UI 1.8-2.4) and low-income countries are expected to grow at 1.8% (1.0-2.8). Despite this growth, health spending per capita in low-income countries is expected to remain low, at 154(UI133181)percapitain2030and154 (UI 133-181) per capita in 2030 and 195 (157-258) per capita in 2040. Increases in national health spending to reach the level of the countries who spend the most on health, relative to their level of economic development, would mean $321 (157-258) per capita was available for health in 2040 in low-income countries. Interpretation: Health spending is associated with economic development but past trends and relationships suggest that spending will remain variable, and low in some low-resource settings. Policy change could lead to increased health spending, although for the poorest countries external support might remain essential

    Cell proliferation in human epiretinal membranes: characterization of cell types and correlation with disease condition and duration

    Get PDF
    To quantify the extent of cellular proliferation and immunohistochemically characterize the proliferating cell types in epiretinal membranes (ERMS) from four different conditions: proliferative vitreoretinopathy (PVR), proliferative diabetic retinopathy, post-retinal detachment, and idiopathic ERM. Forty-six ERMs were removed from patients undergoing vitrectomy and immediately fixed in paraformaldehyde. The membranes were processed whole and immunolabeled with either anti-MIB-1 or anti-SP6 to detect the K(i)-67 protein in proliferating cells, in combination with anti-glial fibrillary acidic protein or anti-vimentin to identify glia, anti-ezrin to identify retinal pigment epithelial cells, Ricinus communis to identify immune cells, and Hoechst to label nuclei. Digital images were collected using a laser scanning confocal microscope. The cell types were identified, their combined proliferative indices were tabulated as the average number of anti-K(i)-67-positive cells/mm(2) of tissue, and the number of dividing cells was related to the specific ocular condition and estimated disease duration. ERMs of all four types were shown to be highly cellular and contained proliferating cells identified as glia, retinal pigment epithelium, and of immune origin. In general, membranes identified as PVR had many more K(i)-67-positive cells in comparison to those in the other three categories, with the average number of K(i)-67-positive cells identified per mm(2) of tissue being 20.9 for proliferative diabetic retinopathy, 138.3 for PVR, 12.2 for post-retinal detachment, and 19.3 for idiopathic ERM. While all membrane types had dividing cells, their number was a relatively small fraction of the total number of cells present. The four ERM types studied demonstrated different cell types actively dividing at the time of removal, confirming that proliferation is a common event and does continue over many months. The low number of dividing cells at the time of removal in comparison to the total number of cells present, however, is an indicator that proliferation alone may not be responsible for the problems observed with the ERMs. Treatment strategies may need to take into consideration the timing of drug administration, as well as the contractile and possibly the inflammatory characteristics of the membranes to prevent the ensuing effects on the retin
    corecore